
•Post Project No. 32

elektor post | Project No. 32 | 1

BBB expansion connectors. See Table 1 for
a quick summary of analog pins and for the
BBB pin-out details in full, Table 2.
In addition to the analogue signals there are
also separate AVCC (Analogue VCC) and AGND
(Analog Ground) power supplies pins.
Whilst the BBB GPIO are 3.3-V compatible,
the analog pins are only rated at 1.8 V. So
be careful what voltage signals you connect
to them unless we want to send your BBB
to the great kennel in the sky. If you plan to
measure anything greater than 1.8 V use a
voltage divider with a lower leg resistor value
of 1 k-ohms.

Contrary to what some people in Silicon Valley
and others always seen near Ethernet outlets
want to make you believe, the world is not
entirely digital.

Introducing the BBB Analog I/O
The BBB ADC has the following properties:

• 12-bit resolution (0 to 4095)
• 125-ns sample time
• 0 V to 1.8 V range (!!!!)

There are 7 analog inputs available on the

BeagleBone Black,
The Sequel (3)
Part 3: BBB Analog Inputs

In our first dot-Post on the BeagleBone Black (BBB) we looked at digital I/O.
In this installment we’ll deal with the BBB’s analog capabilities. Let’s find our
[USB] lead and take the Dog for a walk.

By Tony Dixon (UK)

•Post Project No. 32

elektor post | Project No. 32 | 2

command in the terminal session:

echo cape-bone-iio > /sys/devices/
bone_capemgr.*/slots

Using the Linux command cat we can report
(or measure) the voltage in millivolts (mV)
at AIN0 by typing:

cat /sys/bus/iio/devices/iio\:device0/
in_voltage0_raw

If we want to see the ADC count instead,
we can use the following command:

cat /sys/devices/ocp.2/helper.14/AIN0

Feeding Coding Time
Whilst using sysfs is great for a quick test we
can build on this and wrap these operations
into a C/C++ program.
For our test we’ll use a 5-kΩ potentiometer
connected across AVCC (pin 32) and AGND

Using sysfs
Like the earlier GPIO examples we again have
the advantage of being able to use Linux’s
‘sysfs’ virtual file/driver structure to interact
with the analog pins without resorting to
writing a single line of code.
Let’s open a terminal session and start by
enabling the analog driver. Type the following

SIGNAL P8 SIGNAL

GND 1 2 GND

GPIO1_6 3 4 GPIO1_7

GPIO1_2 5 6 GPIO1_3

TIMER4 7 8 TIMER7

TIMER5 9 10 TIMER6

GPIO1_13 11 12 GPIO1_12

EHRPWM2B 13 14 GPIO2_26

GPIO1_15 15 16 GPIO1_14

GPIO0_27 17 18 GPIO2_1

EHRPWM2A 19 20 GPIO1_31

GPIO1_30 21 22 GPIO1_5

GPIO1_4 23 24 GPIO1_1

GPIO1_0 25 26 GPIO1_29

GPIO2_22 27 28 GPIO2_24

GPIO2_23 29 30 GPIO2_25

UART5_CTS 31 32 UART5_RTS

UART4_RTS 33 34 UART3_RTS

UART4_CTS 35 36 UART3_CTS

UART5_TXD 37 38 UART5_RXD

GPIO2_12 39 40 GPIO2_13

GPIO2_10 41 42 GPIO2_11

GPIO2_08 43 44 GPIO2_09

GPIO2_6 45 46 GPIO2_07

SIGNAL P9 SIGNAL

GND 1 2 GND

3.3V 3 4 3.3V

5V 5 6 5V

5V_SYS 7 8 5V_SYS

PWR_BUTTON 9 10 SYS_RESET

UART4_RXD 11 12 GPIO1_28

GPIO4_TXD 13 14 EHRPWM1A

GPIO1_16 15 16 EHRPWM1B

I2C1_SCL 17 18 I2C1_SDA

I2C2_SCL 19 20 I2C2_SDA

UART2_TXD 21 22 UART2_RXD

GPIO1_17 23 24 UART1_TXD

GPIO3_21 25 26 UART1_RXD

GPIO3_19 27 28 SPI1_CS0

SPI1_D0 29 30 SPI1_D1

SPI1_SCLK 31 32 AVCC

AIN4 33 34 AGND

AIN6 35 36 AIN5

AIN2 37 38 AIN3

AIN0 39 40 AIN1

GPIO_20 41 42 GPIO_7

GND 43 44 GND

GND 45 46 GND

Table 2. BeagleBone Black Expansion Pinouts; P8, P9.

Table 1. Analog port pinout

Signals (P9) Pin

AIN0 39

AIN1 40

AIN2 37

AIN3 38

AIN4 35

AIN5 36

AIN6 33

AGND 34

AVCC 32

•Post Project No. 32

elektor post | Project No. 32 | 3

Once compiled if we’ve had no compilation
errors we can run our program by typing:

./analogue

We should see the analog pin being measured
once a second. Turn the pot and observe the
screen print out.
We could easy use this code snippet to
measure temperature by using a TMP36 which
by some good fortune has an output 0 V to
1.8 V.

(130492)

Web Links

[1] Beagle Website: http://beagleboard.org

[2] www.elektor-magazine.com/130492

(pin 34) with the wiper connected to AIN0
(pin 39). Open a terminal session and start
the nano editor with:

nano analogue.cpp

Type the program from Listing 1 appended to
the article. Once finished, save the program
by pressing Ctrl+X, Y and Enter to confirm
saving the program. Silicon Valley people
only: download the program ‘analogue.
cpp’ from our website [1], it’s in archive file
130492-11.zip.
Once saved, in our terminal we can compile
the C/C++ program by typing:

g++ analogue.cpp -o analogue

Listing 1

#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main()
{
int fd, fdstat;
char buffer[1024];

const char AIN0 [] = "/sys/bus/iio/devices/iio\:device0/in_voltage0_raw";

/* Open sysfs to Analogue input */
fd = open (AIN0, O_RDONLY);

 while (1)
 {
 /* Read Analogue input */
 fdstat = read(fd, buffer, sizeof(buffer));

 /* Print result */
 if (fdstat != -1)
 {
 buffer[fdstat] = ‘\0’;

 /* Print string and value*/
 printf("AIN0 value = %s \n", buffer);

•Post Project No. 32

elektor post | Project No. 32 | 4

 lseek(fd, 0, 0);
 }

 /* Small delay */
 sleep(1);
 }

 /* Close sysfs & exit */
 close(fd);
 return 0;
}

