
Elektor•Post Project No. 26

elektor post | Project No. 26 | 1

Raspberry Pi that fit directly to its expansion
header, over which the Pi also provides power
at 3.3 V. The voltage range can be adjusted
by adding more resistors in series with R1
and then making suitable adjustments to
the Python code. The comments in the code
should help you find the places where changes
are needed.

The program that accompanies this project
is written for revision 2 of the Raspberry Pi
in Python: a good three-part introduction to
this language for people more used to BASIC
has been published previously in Elektor [1].
There are two versions of the code. In both
cases the Raspberry Pi communicates with an
A/D converter chip using a small number of
GPIO pins and displays readings on its screen.

The expansion circuit
The expansion circuit for the Raspberry Pi
(Figure 1) consists of a Texas Instruments
TLC549 analog-to-digital converter [2]. This
device has a resolution of eight bits and is
controlled over a serial interface. Although no
spring chicken (the device has been around
for more than thirty years!) it is easy to
use, still readily available and, of course,
comes in a DIL package. Here the input to
the converter is fitted with a voltage divider
comprising R1 to R3. For testing the author
connected instead a 10 kΩ potentiometer and
a digital multimeter so that the results could
be compared.

The two miniature pushbuttons ‘HOLD1’ and
‘HOLD2’ cause the displayed reading to be
stored. The stored values are indicated by
marks on the displayed scale as described
below. Pressing the ‘RES’ button clears the
stored values so that new readings can be
recorded and displayed.

The circuit can easily be built on any of the
prototyping boards widely available for the

Raspberry Pi
Voltmeter
with color display

Just a few additional components are needed to turn a Raspberry Pi into a
DC voltmeter capable of reading up to 5 V and displaying the results in color
on a monitor. The entire display area can be used, which makes the project
an ideal basis for demonstrations, for example in schools.

By Hermann Nieder
(Germany)

TLC549

IC1
REF+

REF–

DATA

AINCLK

VCC

GND

CS

4

27

8

1

3

5 6

R3

1M

R2
47k

R1
470k

C5

100n

GPIO7

GPIO8

GND

GPIO24

+3V3

C1

Raspberry Pi Connector
100n

Umeas.
0 ... +5V

S1

RESET

R4

10
k

C2

100n

+3V3

GPIO9

S2

HOLD1

R5

10
k

C3

100n

GPIO11

S3

HOLD2

R6

10
k

C4

100n

GPIO10

130383 - 11
Figure 1.
Expansion circuit for the
Raspberry Pi using an
‘antique’ A/D converter.

Elektor•Post Project No. 26

elektor post | Project No. 26 | 2

Program versions
Figure 2 shows a screenshot of one variant of
the first version of the program. It shows three
readings, the central one (which is larger)
being the current value. The two pushbuttons
can be used to store the current reading as
a digital value. In additional to the digital
readouts is a quasi-analog bargraph-style
display. The stored readings are indicated
on the bargraph by marker lines.

If the stored values will not be too close
together then it is possible to use a slightly
modified version of the program to show the
markers are small arrowheads as shown in
Figure 3.

The second version of the program (Figure 4)
simulates a traditional analog voltmeter
with a needle along with the digital display
below. Again two values can be stored by
pressing the ‘HOLD1’ and ‘HOLD2’ buttons
on the expansion board, and these values are
displayed as marker lines above the meter
scale. The stored values and marker lines
can be cleared as before. Figure 5 shows a
modification of this second version of the code
to include a frame around the meter display.

At start-up both versions of the program allow
a choice from a range of standard colors for
the display background and foreground, and
the selection of a scaling factor to determine
the size of the display. A title for the display
can also be entered.

Testing
The author’s Python programs can be
downloaded from the Elektor website [3],
ideally by connecting the Raspberry Pi itself
directly to the Internet.

Create a new directory under the /home/pi
directory, copy the downloaded archive file
into it and unpack the file.

Before proceeding further it is necessary to
install the Pygame library, which is used in
all the author’s program examples. If you are
using a Debian-based operating system, this
is a matter of typing the following line into a
terminal window:

sudo apt-get install python-game

Figure 2. Digital voltmeter with quasi-analog display.

Figure 3. Color variation including two small arrowheads to indicate stored values.

Figure 4.
Voltmeter with needle
indication and digital
display.

Figure 5.
The de luxe model includes
a frame around the meter.

Elektor•Post Project No. 26

elektor post | Project No. 26 | 3

the foreground color is selected and a bar
corresponding to the new value, and the new
digital value itself, are drawn.

The second version of the program works in a
similar way but the details are more intricate
than the first version. The coordinates of
the start- and end-points of the lines for the
meter scale are calculated using sine and
cosine functions. The deflection angle of the
simulated voltmeter’s needle corresponds
to the current reading, and again the sine

Now you are in a position to try out the
author’s programs.
In the terminal window switch to the directory
where the Python files are stored and run the
program with:

sudo python ADW_PTR_E.py

(Use sudo python ADW_PTR_D.py to try the
German-language version of the code.) Now,
from the terminal window, select one of the
available background colors and press ENTER.
Then select a foreground color, a title for
the display and a scale factor to specify the
desired size of display. The display window
will then immediately open.

If the size of the window implied by the scale
factor is too small or too large the program
can be stopped by pressing control-C in the
terminal window and then restarted. This will
give you the opportunity to choose a new size.
The other versions of the program are
operated in a similar fashion.

In the example in Figure 6 the background
color chosen was ‘white’, while the foreground
color for the needle, the scale and the marker
lines is ‘red’. The scale factor selected was 0.7.
Figure 7 shows the entries made in the
terminal window to display readings from
the TLC549 in blue on a yellow background.

Python listing
The TLC549 A/D converter is controlled using
GPIO pins 7, 8 and 24 of the Raspberry Pi.
To make the code easier to read, GPIO 7
is defined in the software as AD_CS and
GPIO 8 as AD_Clk. The data sheet for the A/D
converter [2] shows how the various signals
have to be controlled to read a sample from
the device. The eight bits of the result are
shifted out of its DATA pin one after another,
whereupon they can be reassembled for
further processing. The DATA pin is connected
to GPIO 24 on the Raspberry Pi, defined in
the software as AD_Dat.

In the first version of the program, when the
bargraph and digital reading is to be updated
the previously-displayed colored bars and
the previous reading must first be erased.
This is done by plotting an ‘invisible’ (that
is, background color) filled rectangle. Then

Figure 6. Meter simulation and the corresponding set-up parameters, entered using
LXTerminal on the Raspberry Pi.

Figure 7. Different set-up parameters result in the simulation shown.

Elektor•Post Project No. 26

elektor post | Project No. 26 | 4

and cosine functions are used to calculate
the required coordinates so that, as in a real
instrument, the needle is aligned with the
right point on the scale. The marker lines
are plotted in a similar way, copying the
instantaneous orientation of the needle when
a pushbutton is pressed.

Before the needle is plotted its previous
position must be erased. As in the case of
the first version of the program, this is done
by selecting the background color and then
plotting its entire area of motion: in this case,
a sector of a circle. Further details of how the
graphics are drawn can be found by looking at
the comments in the program listings.

(130383)

Internet Links

[1] From BASIC to Python, Elektor, May,
June and September 2013; http://
www.elektor.com/110483

[2] http://www.ti.com/lit/ds/symlink/
tlc549.pdf

[3] http://www.elektor.com/130383

[4] http://lxde.org

The following fragment of code (common to both
versions) is responsible for driving the TLC549.

def ADin():
 GPIO.output(AD_Clk,GPIO.LOW)# set AD_Clk to 0
 AD_res=0
 for n in range(10):
 time.sleep(0.05)
 GPIO.output(AD_CS,GPIO.HIGH)# set AD_CS to 1
 MSB=128
 time.sleep(0.001)
 GPIO.output(AD_CS,GPIO.LOW)# set AD_CS to 0
 time.sleep(0.0005)
 AD_value=0
 for z in range(8):
 if (GPIO.input(AD_Dat)):
 AD_value=AD_value+MSB
 GPIO.output(AD_Clk,GPIO.HIGH)# set AD_Clk to 1
 time.sleep(0.0005)
 GPIO.output(AD_Clk,GPIO.LOW)# set AD_Clk to 0
 MSB=MSB>>1
 time.sleep(0.0005)
 result=AD_value
 GPIO.output(AD_CS,GPIO.HIGH)# set AD_CS to 1
 AD_res=AD_res+AD_value
 AD_res=AD_res/10
 result=AD_res
 return result

For digital and graphical display the following
conversion routine needs to be called.

def conversion(value0):
 value=value0
 value=value*1960 # for 5V
 value=value/1000
 pic_value=value/2 # for bargraph display
 one=value/100
 rest_z=value % 100
 tenth=rest_z/10
 hundredth=rest_z%10
 return one, tenth, hundredth, pic_value,value
...

