
•Post Project No. 17

elektor post | Project No. 17 | 1

Cloud Nine and Higher
Multi-Purpose Data Acquisition
Board for a Sounding Balloon
This story is about clouds of the water dropping variety. Transmitting data
from a capsule dangling from a weather or sounding balloon is not easy
as it often involves expensive and sophisticated equipment. Luckily, cheap
alternatives exist. The board presented in this article together with a stan-
dard radio transmitter and GPS receiver can be used to beam down up to
six analog signals and position data from a balloon, and all of that at very
low cost. Our heads are not the clouds either—this project has been up in
the air twice already!

By Anthony Le Cren
(France)

Features
• Arduino based software
• Five analogue inputs on 9-pin sub-d connector (the sixth input monitors the battery

voltage)
• A 9-pin sub-d connector for GPS (NMEA0183A at 4800 baud)
• RS-232 port for in-circuit programming of the microcontroller (with Arduino bootloader)
• AFSK and PTT output to the transmitter
• Uses APRS/AX25 protocol (packet radio)
• Four user inputs/outputs
• 5 V regulated power supply
• Compatible with Byonics GPS4
• Compatible with Baofeng UV-3R or UV-5R two-way VHF radio

•Post Project No. 17

elektor post | Project No. 17 | 2

are available on K8, a 9-pin sub-D connector
(Figure 2, top). After low-pass filtering, the
signals are converted into digital values by
the analog-to-digital converter (ADC) inside
the MCU, and accessible on Port C. The sixth
ADC input is used for measuring the battery
voltage. Voltage divider R3/R4 reduces the
9 volts battery voltage to a safe level for MCU.
A bit further on we’ll provide some examples
of how to read a pressure sensor and a tem-
perature sensor by means of these inputs.

GPS
The GPS unit is connected to K9 (Figure 2,
sub-D connector in top right). Its output signal

What’s on board?
The system pictured in Figure 1 is built
around an ATmega328P microcontroller (MCU)
ticking at 16 MHz. The software is based on
the Trackuino open-source Arduino project
[1]. Even though many sensors can be con-
nected to the board, there is plenty of space
left for extensions. First, we will go through
the different parts of the design, looking at
the circuit diagram in Figure 1 and the proto-
type of the author, shown in Figures 2 and 3.

Analog inputs
Five analog inputs intended for the connec-
tion of sensors (temperature, pressure, etc.)

K16

1

2

3

4

5

6

7

8

9

C8

1u
50V

C10

1u
50V

K9

1

2

3

4

5

6

7

8

9

GPS4
Module

C9

1u
50V

C7

1u
50V

VCC

X1

16MHzC23

22p

C22

22p

K8

1

2

3

4

5

6

7

8

9

R10
470R

R5

1M

C11

1u
50V

R11
470R

R6

1M

C12

1u
50V

R12
470R

R7

1M

C13

1u
50V

R13
470R

R8

1M

C14

1u
50V

R14
470R

R9

1M

C15

1u
50V

VCC

VCC

PD3(INT1/OC2B/PCINT19)

PD6(AIN0OC0A/PCINT22)
PB3(MOSI/OC2A/PCINT3)

PC4(ADC4/SDA/PCINT12)
PC5(ADC5/SCL/PCINT12)

PD5(T1/OC0B/PCINT21)
PB0(ICP1CLKO/PCINT0) PD4(T0/XCK/PCINT20)

PB2(SS/OC1B/PCINT2)

PC6(RESET/PCINT14)

PC2(ADC2/PCINT10)
PC3(ADC3/PCINT11)

PD2(INT0/PCINT18)

PD7(AIN1/PCINT23)

PC0(ADC0/PCINT8)
PC1(ADC1/PCINT9)

PB1(OC1A/PCINT1)

PB4(MISO/PCINT4)

PD0(RXD/PCINT16)
PD1(TXD/PCINT17)

PB5(SCK/PCINT5)
ATMEGA328-PU

XTAL1 XTAL2

AREF

IC1

AVCC

GND GND

VCC

PB6 PB7

20

21

14
15
16
17
18
19

22

23
24
25
26
27
28

12
13

10

11

1

2
3
4

7

89

5
6

R15

1k

D2

K1
1

2

D1
1N4148

R3

8k
2

R4

4k
7

C1

100u
25V

C2

100n

LM2940T-5
IC2

1 3

2

C3

100u
25V

C4

100u
25V

C6

100n

C5

100n

K4
1
2
3
4

R16

10
k

1

2

3

K13

1

2

3

K5

C24

100n

C19

10u
25V

MAX232

T1OUT

T2OUT
R1OUT
R2OUT

R1IN

IC3

T1IN

T2IN

R2IN

C1–

C1+

C2+

C2–

VCC

GND

11

12
10

13

14

15

16V+

V-

7

89

3

1

4

5

2

6

K12
21

K11
1

2
3

K10
1
2

C20

100u
25V

VCC

VCC

K14
1
2
3
4

TX

C21

1u
50V

P1
47k

C17

47n

R19
1k

R20

10
k

C16

220n

T1

IRF530NPBF

R17
1k

R18

1k C18

47n

VCC

130082 - 11

K2

1

2

K3

1

2

K7

1

2

K6

1

2

K15

1

2

Figure 1.
Circuit diagram of the
sounding balloon data
acquisition board.

•Post Project No. 17

elektor post | Project No. 17 | 3

Power supply
The power supply is a traditional design. Note
however that the use of the classic 7805 volt-
age regulator for IC2 is not recommended
because of its huge minimum voltage drop
of about 3 V. With diode D1 the battery
voltage line at least 9 V would be required.
Using a low-dropout (LDO) regulator like the
LM2940T-5, it is possible to power the board
from as low as 6 V (minimum). 9–6 = 3 volts
doesn’t seem like a lot, but the battery voltage
drops appreciably with freezing temperatures

is available on pin 2 of K11. It’s an RS-232
compatible signal—hence it’s passed through
IC3, the classic MAX232, before feeding it to
the MCU. The purpose of K11 is to direct the
GPS signal to the microcontroller (position
2-3), or to the TX pin of K16 (position 1-2).
This allows you to view the NMEA0183A “sen-
tences” on a conventional serial terminal. In
this case, do not forget to remove jumper
K12, or the TX2 output from IC3 may inter-
fere with the GPS signal.

The GPS unit needs 5 V to work; pin 4 of K9
does the job. The supply voltage can be inter-
rupted by removing the jumper on K10, which
is useful when a PC running a simulator like
SIM GPS is being used instead of a real GPS.
A GPS simulator facilitates the development
of your program, and allows you to check the
correct operation of the system before the
final launch. Connect the board and the PC
with a standard null modem (crossover) cable.

VHF radio
Let’s move on to the packet radio interface.
The author suggests using a Baofeng UV-5R
unit (Figure 3, left) or a UV-3R two-way VHF
radio for this. Both have a double jack connec-
tor (Figure 4). Only three signals are used,
connected to K14: PTT (push to talk) (pin 2),
MIC+ (pin 3) and GND (pin 4).

The radio uses Frequency Shift Keying (FSK)
modulation to transmit data. Consequently
the audio signal alternates between two fre-
quencies (1200 Hz and 2200Hz) in order to
transmit a binary value. Because the MCU
does not have a digital-to-analog converter
(DAC), a pulsewidth modulated (PWM) signal
is used instead. A band-pass filter consisting
of a first-order high-pass and low-pass filter in
series, transform this PWM signal into a qua-
si-sinusoidal signal. The output level can be
adjusted with potentiometer P1 before feed-
ing it to the MIC input of the VHF transmitter.
The PTT virtual ‘switch’ effectively puts the
radio in Transmit mode. An input is avail-
able on the radio so the MCU can ‘push’ the
switch too. The PTT on port PD4 of the MCU
drives an IRF530 MOS transistor, creating an
open-drain output that should be compatible
with the majority of VHF radios. LED D2 will
light when PTT is High, showing that there’s
a transmission in progress.

Figure 2.
The populated board as used
by the author.

Figure 3.
Complete setup of the
system, including the board,
the VHF radio and the GPS.

•Post Project No. 17

elektor post | Project No. 17 | 4

of the microcontroller. Doing so will however
cost you two analog inputs (channels 4 and 5).
Finally there is also K13. With a jumper on
its pins 1 & 2, you create a serial output on
pin 9 of the analog extension port K8. A serial
input is available on pin 8 of this connector.
You can now communicate with a PC through
K8. If you put the jumper on pins 2 & 3 of
K13 the serial port on K8 will be connected
directly to the MCU. This extra port may prove
useful in case you decide to run the serial
line to an external peripheral, like a second
microcontroller!

Built to fly
Assembling the board should not pose seri-
ous problems. A revised version is available
at Elektor.LABS [2] in the form of Gerber
files, PDFs and a DesignSpark PCB 5 proj-
ect. As usual, solder carefully, and mount the
components from smallest to largest. All are
mounted at the top side of the PCB.
The board was designed for a GPS4 unit from
Byonics (which may be seen in Figure 3, bot-
tom right). If you want to use another GPS
unit, you may have to adapt the connections.
Make sure that the output signal of your GPS
is RS-232 compatible and that the baud rate
is 4800 bits/s.

at high altitudes. To be safe for the duration of
the flight we should use an 8 to 9 V supply as
a minimum. You can make one by connecting
six 1.5 V batteries in series. The total current
consumption of the board is below 60 mA,
including the GPS unit.

Programming that ATmega
Thanks to connector K16 the Atmega micro-
controller can be programmed without remov-
ing it from the board. To do so, connect the
board with a one-on-one (straight trough)
cable to a PC with a real RS-232 port (you still
have one, do you?). IC3, a classic MAX232,
adapts the RS-232 signal levels to those used
by the MCU. The TX and RX signals are on
pins 2 and 3 of the MCU. Pinheader K5 lets
you select the source of the Reset signal for
the MCU. A jumper on 2 & 3 allows the PC to
force a reset via the RTS pin of K16, which
will launch the MCU’s bootloader (the Arduino
IDE will do this for you).
The firmware is available via the project page
at Elektor.LABS [2], together with the rest of
the files. Once the MCU is programmed, fit
the jumper on pins 1 & 2 to avoid accidental
resets. The GPS unit that shares the same
serial port must be disconnected when you
program the MCU. You can do this by unplug-
ging it, or by removing the jumper on K11.
Table 1 gives an overview of the jumper set-
tings for every case.

Extensions
In case there are further circuits on board the
capsule, connectors K2 and K3 can provide
the 5 V supply voltage. Extension connectors
K6 and K7 are available for switching things
during the flight. Please note that it is up to
you to adapt the firmware to add such func-
tions. Connector K4 got added for those who
want to use sensors that communicate over
an I²C bus, connected to ports PC4 and PC5

Figure 4.
Double jack connector of the
Baofeng UV-5R VHF radio.
Only three of the six signals
are used here.

Table 1. Jumper settings

MCU programming
using the Arduino IDE

Launch
simulation

View GPS4
output

Launch of
balloon

K5 2-3 1-2 1-2 1-2

K13 2-3 2-3 2-3 2-3

K12 Closed Closed Open Closed

K11 Open 2-3 1-2 2-3

K10 Don’t care Open Closed Closed

•Post Project No. 17

elektor post | Project No. 17 | 5

(APRS) protocol [3]. Next a header corre-
sponding to the AX25 protocol [4] is added
to the APRS frame.
But that’s not all. The bits of the data frame
must modulate a carrier to make the data
compatible with the VHF transmitter. This is
the role of the Audio Frequency-Shift Keying
(AFSK) modulator. It transforms the AX25
ASCII string into a series of tone bursts
with frequencies of 1,200 Hz and 2,200 Hz
at a speed of 1,200 bits/s. If the frequency
changes between two consecutive bursts,
a logic 0 is transmitted. If on the contrary
the frequency remains the same, a logic 1 is
transmitted. Figure 6 provides an example
of how the transmission is carried out.
The software is compatible with the current
version of Arduino (1.0.5). Be sure to change
the balloon’s callsign in the file ‘config.h’:

#define S_CALLSIGN “F6XXX”

The easiest way to get a valid callsign is to

The same goes for the VHF transmitter. If you
want to use a model other than the Baofeng
UV-5R or UV-3R, you may have to adapt the
connections. It is important that your trans-
mitter is type approved and has a PTT con-
trol input and an audio (microphone) input
for the modulated signal. Typically these are
jack connectors. You can test the board’s radio
output with a simple walkie-talkie or with a
433 MHz module that has an analog input.

Examples of analog sensors
The five inputs on connector K8 are analog
and accept voltages between 0 and 5 V. The
MCU’s ADC is configured in 8-bit mode, pro-
ducing output values from 0 to 255.

Pressure sensor
The pressure sensor is easy to connect to the
board. Simply wire up the 5 V supply voltage,
and connect the output of the sensor to one of
the analog inputs on K8. This sensor is quite
easy to use, but beyond a certain altitude,
when the atmospheric pressure drops below
100 mbar, it is no longer sensitive enough.
Its output remains constant where it should
keep decreasing, when the balloon continues
to ascend.

Temperature sensor
It is always interesting to measure tempera-
ture outside as well as inside the capsule (Fig-
ure 5). This can be done easily with a simple
voltage divider where one of the two resistors
has an NTC resistor (Negative Temperature
Coefficient). These resistors are also known
as thermistors. The resistor values are not
critical as long as the divider produces a sig-
nal that nicely covers the range of interest.
The author got good results with a 10 kΩ
NTC resistor connected in series with a 36 kΩ
fixed-value resistor.

Software
The software embedded in the capsule is sim-
ilar to the seven-layer OSI model. Although
there are many differences, we can distinguish
several layers: Application � APRS � AX25 �
AFSK modulation � VHF transmission.
The application layer corresponds to the ana-
log inputs and to the acquisition and decod-
ing of the GPS NMEA0183A data. The data
obtained is put in a frame, in accordance
with the Automatic Packet Reporting System

Figure 6.
Example of an AFSK
transmission.

Figure 5.
A look inside the capsule:
there’s enough room for
everything!

•Post Project No. 17

elektor post | Project No. 17 | 6

frame right after the word “Ballon” and two
bars (||).

I don’t wanna lose you
It should not be too difficult to track your
balloon during most of the flight. However,
when the balloon drops to an altitude below
2,000 m (6,000 ft.), it is common to lose the
radio signal.
To ensure you can recover the capsule, it is
wise to add a GSM/GPRS/GPS tracker mod-
ule to the capsule. Such a device adds little
weight and, equipped with a SIM card, will
send text messages containing its latitude
and longitude to a predefined smartphone.
Cellphone (GSM) repeater antennas are
slightly oriented towards the ground mean-
ing that the tracker will lose its network at
altitudes from about 700 m (2,000 ft.). For-
tunately it will wake up again as soon as it
detects a network, which is when the capsule
is getting close to the ground and eventu-
ally lands.

contact the radio club nearest to you [5].
The code that implements the AX25 proto-
col is found in the file ‘aprs.cpp’. The func-
tion ax25_send_string allows you to prepare
the AX25 frame before sending it using the
function ax25_flush_frame. After sending the
frame you can add your own code to command
the devices that you may have connected to
K6 and K7.

Setting up the reception chain
Receiving an AX25 frame from the balloon
cane b done with a suitably tuned VHF-UHF
receiver or scanner. Decoding of the frame is
done by a PC by connecting the audio output
from the scanner to the line input on the PC.
The following software must be installed:
• AGWPE: frame decoding;
• AGWTrackerXP: frame display and the

rough location of the balloon on a map;
• Packet Engine: display the measured

data.

These three may be downloaded for free at
[6] too.
After installing AGWPE, restart your PC, and
then run the program and configure a com-
munication port, as shown in Figure 7.
Now install AGWTrackerXP. Enter the callsign
as the receiving station. A TCP/IP connec-
tion should be created automatically between
AGWPE and AGWTrackerXP.
The last software to install is Packet Engine.
This tool saves the received data in a text file
for a further analysis with a spread sheet.
A screenshot is depicted in Figure 8. Let’s
have a look at one of these long strings. Here
it’s easy to identify the AX25 header and the
APRS frame (which includes the hour, lati-
tude, longitude, etc.). The AX25 header ends
with a vertical black bar (|), and the APRS

Figure 7.
Port configuration in AGWPE.

Figure 8.
Screenshot of Packet Engine,
showing some received
data.

•Post Project No. 17

elektor post | Project No. 17 | 7

stratosphere, the temperature rises again. The
temperature inside the capsule was found to
follow the same tendency. Figure 9 shows
a graph with these results.

Sounding off
Regulations concerning weather and sound-
ing balloons differ per country. For France, if
you have a partnership with Planète Sciences,
the capsule must measure at least 30 cm (1
foot) and the transmission frequency must
be 137.950 MHz.
Helium gas is quite expensive, which is why
many enthusiasts build a hot air or a solar
balloon. As opposed to helium-filled balloons,
they do not explode and will travel hundreds
of miles. For shooting photos and video, there
are several solutions, selected on cost basis.
The author used two types of camera—one
HD, and one “keychain spy”. The first pro-
vides images of very good quality, whereas
the second gives good results at modest costs.
Just to give an example of the measuring
results you may get, the minimum outside
temperature registered during the author’s
experiment was about –28 °C at an altitude of
15,000 m (45,000 ft.), when it was expected
to be around –56 °C at 10,000 m (30,00 ft.)
altitude. The sensor must have been influ-
enced by the heat emanating from the bal-
loon’s capsule. When the balloon enters the

Figure 9.
Temperature registered
during the test flight. It
must be influenced by the
capsule’s heat, as it was
expected to be almost 30°C
lower.

Checklist
Preparation
• On the PC, launch the software in this order:

 - AGWPE
 - AGWTrackerXP
 - Packet Engine

• Switch on the VHF receiver (tuned to the transmitter)
• Do not connect the VHF receiver to the PC yet

GPS simulation with SimGPS
• Check the jumpers on the board
• Connect connector K9 to the PC via a cross-wired cable with a 9-pin female sub-d

connector on each end
• Launch the NMEA simulator, start sending frames
• Turn on the VHF transmitter
• Power the board with 8 to 9 V
• The LED D2 will light when a frame is sent

Reception
• Incoming frames should be heard on the receiver
• If this is the case connect the receiver to the PC
• You should see the frame appear in AGWTrackerXP
• To see the balloon move over the map, right click on its call sign, then click on ‘Locate’

followed by ‘Show on map’.

•Post Project No. 17

elektor post | Project No. 17 | 8

Internet Links

[1] www.trackuino.org

[2] www.elektor-labs.com/130082

[3] http://en.wikipedia.org/wiki/
Automatic_Packet_Reporting_System

[4] www.tapr.org/pub_ax25.html

[5] http://en.wikipedia.org/wiki/
List_of_amateur_radio_organizations

[6] www.sv2agw.com/downloads/default.htm

[7] http://bit.ly/17x8dlm

Regarding the altitude measured by the GPS
unit, from Figure 10 you may notice the very
linear first phase when the balloon rises with
a speed between 4 m/s and 6 m/s depending
on the volume of the helium in the balloon.
The balloon burst at 30,000 m (90,000 ft),
which explains the very rapid descent.
The system described in this article was devel-
oped in a college environment. The author
got great pleasure from building the system
with his students. Evidently, the pressure on
everybody increases when the launch date
is fast approaching, so a checklist must be
prepared carefully and gone through sev-
eral times, because there is only one bal-
loon. Once the balloon is launched, it is great
fun to observe its voyage in real time, and
decode the data it sends down. Then, relying
on weather forecasts it’s time to start wor-
rying about the landing position of the cap-
sule. When the balloon explodes, the hunt
to recover the capsule starts. Although it is
easy to locate the capsule with a tracker, it
may have landed high up in a tree or even in
water. Once the capsule is safely recovered,
it’s gratifying again to look at the pictures and
videos taken during the flight. An outstand-
ing set of pictures was already presented in
Elektor.POST #20, but in case you missed
that, you may find it here [7]. The last pic-
ture represents the complete route of the
balloon, departing from Le Mans (France).
It’s definitely worth checking!

(130082)

Figure 10.
Altitude registered by the
GPS. The balloon burst at
30,000 m, which can be
clearly seen here.

