
Elektor•Post Project No. 14

elektor post | Project No. 14 | 1

nals and the SPI interface can be found
on pin 19 (MOSI), pin 21 (MISO), pin 23
(SCK) with the two SPI Chip Enables found
on pins 24 (CE0) and 26 (CE1).
Check out the text box “Installing Python’s
SPI Library” for details how to install the
Python SPI library and how to configure
your Pi to access the SPI interfaces.

ADC Hardware
In this, our Raspberry Pi first analog proj-
ect we’ll be using a single MCP3004 from
Microchip [1]. The MCP3004 is a 4-chan-
nel, 10-bit ADC.
Figure 1 shows a simple MCP3004 cir-
cuit. The chip is connected to the RPi’s SPI
interface and we have the option of using
either one off the two SPI Chip Enable sig-

A lack of (analog) culinary tools L
The Expansion Header of the Raspberry Pi
does not have any analog interfaces, not
a single one. This is a shame, when other
platforms such as the Arduino and Beagle-
Bone Black all sport several of them.
But do not despair, we can use either one
(or both) of the SPI or I2C serial interfaces to
connect a serial ADC. So let’s start using the
SPI interface. We’ll be adding a 4-channel
MCP3004 ADC chip with 10-bit resolution.

SPI Interface
We previously looked at the Serial Periph-
eral Interface (SPI) Interface in the Elektor.
POST project #9 but we can quickly recap
on the hardware interface.
Table 1 details the Expansion Header sig-

Raspberry Pi Recipes
Part #6
A Distinguished Chef
enters the kitchen

So far in our Elektor.POST projects
we have looked at mainly digital sig-
nals such as GPIO, Serial UART, SPI
and I2C of the Raspberry Pi’s expan-
sion header. In this installment we’ll
be adding some analog functionality
our Raspberry Pi’s by adding an An-
alog-to-Digital (ADC) interfaces via
the SPI Bus.

By Tony Dixon (UK)

Elektor•Post Project No. 14

elektor post | Project No. 14 | 2

nals (CE0 or CE1) via a jumper. The circuit
is easy enough to assemble in a standard
breadboard.

The MCP3004 is powered from 3.3 volts,
and we should take precautions with what
voltages we connect to it. The signal con-
dition circuit for each of the ADC channels
is the same. If we look at Channel 1 of the
ADC we can see a voltage divider circuit
performed by resistors R1 and R2. Using
the voltage divider calculation:

=
+

×V R
R R

V2

1 2out in

• To measure 0V to 5 V, R1 = 10 kΩ and
R2 = 10 kΩ, which would give us an ADC
reading of 0 V – 2.5 V.

• To measure 0 V to 10 V, R1 = 10 kΩ and
R2 = 22 kΩ, which would give us an ADC
reading of 0V to 3.125 V.

• To measure 0 V to 3.3 V, R1 = 1 kΩ and
R2 is not fitted. This would give us an
ADC reading of 0 V to 3.3 V.

We can repeat the resistors choices for
the other ADC channels #2, #3 and #4
as needed.
If we need to add a little filtering to our ana-
log signal to perhaps get rid of unwanted
noise we use a value of 1 nF to 10 nF for
capacitors C3–C6.

If we want to add additional overvoltage
protection to our circuit we can populate

Figure 1. Schematic for Raspberry Pi MCP3004 ADC Interface.

Table 1. Expansion Header Pin Out

Pin Name Pin Function Alternative RPi.GPIO
P1-02 5.0V - -
P1-04 5.0V - -
P1-06 GND - -
P1-08 GPIO14 UART0_TXD RPi.GPIO8
P1-10 GPIO15 UART0_RXD RPi.GPIO10
P1-12 GPIO18 PWM0 RPi.GPIO12
P1-14 GND - -

P1-16 GPIO23 RPi.GPIO16

P1-18 GPIO24 RPi.GPIO18
P1-20 GND - -

P1-22 GPIO25 RPi.GPIO22

P1-24 GPIO8 SPI0_CE0_N RPi.GPIO24
P1-26 GPIO7 SPI0_CE1_N RPi.GPIO26

Pin

Name

Board Revision 1 Board Revision 2
Pin Function Alternative Pin Function Alternative

P1-01 3.3V - 3.3V -
P1-03 GPIO0 I2C0_SDA GPIO2 I2C1_SDA
P1-05 GPIO1 I2C0_SCL GPIO3 I2C1_SCL
P1-07 GPIO4 GPCLK0 GPIO4 GPCLK0
P1-09 GND - GND -
P1-11 GPIO17 RTS0 GPIO17 RTS0
P1-13 GPIO21 GPIO27

P1-15 GPIO22 GPIO22
P1-17 3.3V - 3.3V -
P1-19 GPIO10 SPI0_MOSI GPIO10 SPI0_MOSI
P1-21 GPIO9 SPI0_MISO GPIO9 SPI0_MISO
P1-23 GPIO11 SPI0_SCLK GPIO11 SPI0_SCLK
P1-25 GND - GND -
Note: I2C0_SDA and I2C0_SCL (GPIO0 & GPIO1) and I2C1_SDA and I2C1_SCL (GPIO2 & GPIO3) have
1.8-kΩ pull-up resistors to 3.3 V.

Elektor•Post Project No. 14

elektor post | Project No. 14 | 3

Library”) we’re now going to write a small
test program to measure and display a volt-
age on ADC Channel 1.
Double-click the IDLE icon on your Pi’s
desktop to start the Python Shell and IDE

ZD1 to ZD4 with 3.3-V zener diodes.

Example Program – mcp3004.py
With our circuit built and spidev installed
(see textbox “Installing Python’s SPI

Installing Python’s SPI Library

We already installed the Python SPI library [2] back in Elektor.POST project #9, but in case you missed it here are
the instructions again. Let’s start an LXTerminal session (Figure 4) and type the following commands:

sudo apt-get install git-core

cd ~
git clone git://github.com/doceme/py-spidev
cd py-spidev/
sudo python setup.py install

or alternatively you can use the “Pip”, the Python Package Installer

sudo apt-get install git-core python-dev
sudo apt-get install python-pip
sudo pip install spidev

The hardware SPI is disabled by default, so we have to change this by editing the blacklist file:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

Find the text line with blacklist spi-bcm2708, insert a # (hash) at the start of the line to comment out the statement
and then save the file. Once saved, let’s do a quick reboot by typing

sudo reboot

Once we’ve rebooted, we can start a new LXTerminal session and type...

ls /dev/spi*

...to check that we have two SPI devices list (one for each SPI Chip Select signal) and we should have:

/dev/spidev0.0
/dev/spidev0.1

Figure 2.
IDLE Python Shell.

Elektor•Post Project No. 14

elektor post | Project No. 14 | 4

(Figure 2).
Select File option from the menu and cre-
ate a new program. This will start the IDLE
editor. In the IDLE editor (Figure 3), type
the program as shown in Listing 1.
Once you’ve typed the program, make sure
you save it, then switch to a LXTerminal
and type the following command to make
your program an executable:

chmod +x mcp3004.py

Once done, you can run your program by
typing the following command:

sudo ./mcp3004.py
(130260)

Internet Links

[1] http://goo.gl/eMSOQ

[2] https://github.com/doceme/py-spidev

Listing 1

#! /usr/bin/python

import spidev
import time

Create SPI instance and open SPI bus using CE0
spi = spidev.SpiDev()
spi.open(0,0)

Loop
while True:

 # Read ADC Ch #1
 rcv = spi.xfer2 ([1,8<<4, 0])
 adcval = ((rcv [1]&3) << 8) + rcv[2]

 # Display value
 Print “ADC = “, adcval

 # Wait
 time.sleep(1)

A Quick Summary of spidev commands

spi.open (0,0) opens SPI bus 0 using CE0.
spi.open (0,1) opens SPI bus 0 using CE1.
spi.close () disconnects the object from the interface.
spi.writebytes ([array of bytes]) writes an array of bytes to SPI device.
spi.readbytes (len) reads len bytes from SPI device.

spi.xfer2 ([array of bytes])
transmits an array of bytes
keeping the CEx asserted the whole time.

spi.xfer ([array of bytes])
transmits an array of bytes de-asserting
and re-asserting the CEx with every byte transmitted.

Figure 3. IDLE Editor. Figure 4. LXTerminal.

