
Elektor•Post Project No. 10

elektor post | Project No. 10 | 1

Software: what this claims to be
The software was written in C using the
well-known (and free!) Atmel Studio 6
suite [1]. The basis of the software is the
USB Device Stack. It’s also available as
a self-contained, free library. V-USB can
be downloaded directly from their devel-
oper’s website [2], where it is graced by
a dedicated microsite [3]. There you may
also find some useful examples, which are
great as starting points for creating USB
projects without having to delve deep into
horrid protocol stuff.

Hardware—what this really is
As already mentioned, the hardware is plain
sailing and inexpensive (Figure 1). The
cornerstone of the USB Keyboard Stick is
an Atmel AVR Attiny85 microcontroller. By
means of two 1N4148 diodes, D1 and D2,
the 5 V supply voltage is reduced to about
3.6 V, with capacitor C1 doing the smooth-
ing. The 1.5-kΩ resistor (R3) sets the speed
identification of the USB—in this case we
have a low-speed device. A 16-MHz quartz
crystal generates an accurate clock signal.
It’s also possible to omit this component
and rely on the internal oscillator, if config-
ured to operate at 16.5 MHz. An LED with
its series resistor R4 is used as a minimal
status indicator.
The circuit can be built quickly on a piece
of prototyping board with a USB-A connec-
tor, keeping it compact (see Figure 2). An
SMD version and a ‘real’ etched board will
be even more compact and can be easily
housed in a junked USB drive enclosure.

Owing to space constraints, an SPI port
header was omitted here. The ATtiny85
micro can be programmed using just three
wires, including the Debug Wire (dW) and
the power supply. To do so, feel free to
connect these lines to the controller with
improvised cables and test clips.

USB Stick Disguised
as a Keyboard
An emulated keyboard on USB,
with an AVR controller
To the average e-enthusiast, the RS232 interface always appears friendlier than the USB port. How-
ever, with a small 8-bit microcontroller, nowadays it’s possible to implement the USB bus in device
mode. The advantages are obvious. First, you save the cost of a USB/RS232 converter. Then, USB
devices such as keyboards can be easily emulated without needing a separate driver, meaning you
are able to design a programmable USB keyboard at minimum hardware cost and software effort.
And as you will discover here, our versatile USB Keyboard Stick not only helps to build useful de-
signs—it’s also fun to use by itself!

By Markus Hirsch
(Germany)

Figure 1.
USB Keyboard Stick
schematic.

Elektor•Post Project No. 10

elektor post | Project No. 10 | 2

years
ago Elektor mag-
azine presented a reduced
and low-cost version [5]. Now we
introduce the USB Annoy-a-Tron, based
on a vastly different concept and featur-
ing improved annoying capabilities that will
drive your workmates and relatives com-
pletely crazy. A typical and well known joke
is to swap the letters “v” and “b” in a
standard keyboard (physically), as they are
close together. The USB Annoy-a-Tron goes
way further, let’s see what it has to offer...

The USB Annoy-a-Tron is basically a perma-
nent Caps Lock. Once the stick is plugged
into the PC, it will be recognized as a key-
board. Afterwards, the PC will provide the
status of the three LEDs (Caps, Num and
Scroll Lock). The stick will now evaluate
the bit that represents the Caps Lock key.
Once you press it again to deactivate it,
the USB Annoy-a-Tron will simulate a vir-
tual keystroke. As a result, Caps Lock will

Once the USB stack is properly configured,
the AVR microprocessor can be detected by
most operating systems, without an extra
driver. As a consequence, the indication of
the specific LEDs used for the Caps Lock,
Num Lock and Scroll Lock keys gets sent to
the stick. In order to emulate keystrokes,
the key codes are provided to the PC, as
shown in Tables 1, 2 and 3. These codes
may include a modifier—for instance, to dif-
ferentiate between an “A” (capital) and an
“a” (lower case). Beware that these codes
do not correspond to the equivalents of the
same characters in ASCII.

Below, two applications of the USB Key-
board Stick are described. The AVR Studio
code and hex files for both applications are
available at the Elektor.LABS website [6].

Function #1: USB Annoy-a-Tron: an
essential evil genius tool
Annoy-a-Tron is a popular hide-and-seek
game designed by ThinkGeek [4]. Three

Figure 2.
The USB Keyboard Stick
can be easily built on a
prototyping board.

Table 1. Coding of the USB keyboard characters (standard keys)

A B C D E F G H I J K L M N

4 5 6 7 8 9 10 11 12 13 14 15 16 17

O P Q R S T U V W X Y Z 1 2

18 19 20 21 22 23 24 25 26 27 28 29 30 31

3 4 5 6 7 8 9 0 Enter Space Esc
Caps
Lock

Num
Lock

Scroll
Lock

32 33 34 35 36 37 38 39 40 44 41 57 83 71

Table 2.
USB keyboard characters coding (special keys)

Ctrl Shift Alt GUI
R.

Ctrl
R.

Shift
R.
Alt

R.
GUI

0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

Table 3.
USB keyboard LED bit codes

Num Lock
Caps
Lock

Scroll
Lock

0x01 0x02 0x04

Elektor•Post Project No. 10

elektor post | Project No. 10 | 3

remove the stick from the PC, and connect
it back again. Needless to say, this combi-
nation of steps can be manually modified
in the file called ‘code.h’ according to our
preferences.

Over to you
All files needed to replicate the project are
available at the web page allocated to the
project on the Elektor.LABS website [6],
including the schematics and the board as
EAGLE files.

Here we’ve shown that implementing an
emulated USB keyboard is not difficult at
all, and the possibilities of using a ‘dis-
guised’ microcontroller in your own designs
are almost endless.

As a suggestion for a third application, con-
sider storing different passwords in one USB
stick, and set different combinations of key-
strokes to retrieve them. Well, just in case
you want to take the useful way. If not, any
other funny device would be great. Gags
are always welcome at the Elektor.POST
desk—unless we are victimized, of course.

(120583)

Internet Links

[1] www.atmel.com/microsite/atmel_studio6

[2] www.obdev.at

[3] www.obdev.at/products/vusb/index.html

[4] www.thinkgeek.com/product/8c52/

[5] www.elektor.com/090084

[6] www.elektor-labs.com/120583

be always on (Figure 3), and the user will
not be able to do much else than suffer the
consequences.

Now you only have to insert the stick into
a USB port on the PC that’s not in sight,
like at the back side. And if you are evil
enough, it’s even more exciting to install
it inside the computer case by means of a
small cable adaptor.

Function #2:
Masterkey: stay safe like a pro
The USB Annoy-a-Tron is an amusing prank,
but admittedly it’s not terribly useful con-
sidering the possibilities of such a device.
Thus, the second function is a password
storage system. Passwords are great and
much needed, but also a source of prob-
lems. Most of you will have several pass-
words to ensure good encryption levels in
various places on the web, but they may
not be so easy to remember. For this pur-
pose, there are password managers out
there like KeePass. But again, a ‘strong’
(meaning lengthy and idiosyncratic) mas-
ter password is required. Here is where the
USB Masterkey comes in. Although it’s not
a novel concept, our version introduces an
essential feature not present in other USB
password storage devices. To ‘release’ the
password it’s not enough to just plug the
USB into the PC, as that would be very
unsafe in case you lose the stick. Instead,
to retrieve the password you’ll have to pro-
vide a combination of the three keyboard
LEDs, in a required order. For instance,
in our example the user has to follow the
steps according to the file “code.h”, as part
of the firmware. The steps noted here are:
1. Num Lock, 2. Num Lock + Caps Lock,
3. Num Lock, afterwards the password will
be released. The first step should already
match the combination before starting the
whole process. This means that Num Lock
(step 1) has to be on even before connect-
ing the USB. Then you have to press Caps
Lock, so you get Num Lock + Caps Lock
together (step 2). Then, you press Caps
Lock again so the result is that only Num
Lock is on (step 3). Now the password will
be released. Such a short sequence can
be easily remembered. Should you provide
an incorrect combination, you’re forced to

Figure 3.
The Caps Lock on the
keyboard will flash again.
What’s funny to you isn’t to
the victim.

COMPONENT
LIST
Resistors
R1,R2 = 68Ω, 0.25W,

1%
R3 = 1.5kΩ, 0.25W,

1%
R4 = 330Ω, 0.25W,

1%

Capacitors
C1 = 4.7µF 100V

electrolytic
C2,C3 = 27pF 100V

ceramic

Semiconductors
D1,D2 = 1N4148
LED1 = LED, 5mm,

yellow

Miscellaneous
IC1 = ATtiny85,

programmed
X1 = 16MHz quartz

crystal
K1 = USB-A plug

