
Elektor•Post Project No. 9

elektor post | Project No. 9 | 1

Figure 1 shows a simple circuit. The chip
is connected to the RPi’s SPI interface, and
we have the option of using either one of the
two SPI chip enable signals (CE0 or CE1) via
a jumper.

SPI Interface
The Serial Peripheral Interface (SPI) is the
second of the three serial interfaces you’ll
find on the Raspberry Pi’s Expansion Header.
The other two interfaces are the UART Serial
Interface (see Part 3) and the I2C interface.

Table 1 details the Expansion Header signals.
The SPI interface is found on pins 19 (MOSI),
21 (MISO), and 23 (SCK), with the two SPI
Chip Enable signals found on pins 24 (CE0)
and 26 (CE1).

SPI is designed to interface other devices with
a minimum number of pins in a Master/Slave
arrangement. For our examples the Rasp-
berry Pi will always be the SPI Master. Phys-
ically, the SPI interface normally requires four
signals to function properly. These signals
are Master Out, Slave In (MOSI), Master In,
Slave Out (MISO), Serial Clock (SCK) and
Chip Enable (CEx).

Port Expander Hardware
In our Raspberry Pi SPI project we’ll be
expanding the number of the RPI GPIOs by
adding a Port Expander. In particular we’ll be
using a 16-channel MCP23S17 Port Expander
from Microchip.

Raspberry Pi Recipes
Part #4
Set the Table for
Raspberry (S)PI

Last time we looked at the UART Se-
rial Interface of the Raspberry Pi’s Ex-
pansion Header. In this project we’ll
take a look at one of Raspberry Pi’s
other serial interfaces—the SPI Bus.

By Tony Dixon (UK)

Figure 1. Schematic for
Raspberry Pi MCP23S17 Port
Expander.

Elektor•Post Project No. 9

elektor post | Project No. 9 | 2

use the hardware SPI interface. The hard-
ware SPI is disabled by default, so we have
to change this by editing the blacklist file:

sudo nano /etc/modprobe.d/
raspi-blacklist.conf

Find the text line with blacklist spi-
bcm2708, insert a # (hash) at the start of
the line to comment out the statement, and
then save the file. Once saved, let’s do a quick
reboot by typing:

sudo reboot

Once we’ve rebooted, we can start a new
LXTerminal session and type...

Figure 2 depicts our hardware setup where
we are using a small add-on board [3] to
provide our MC23S17 interface.

Installing Python’s SPI Library
Our programming language of choice for these
project examples is Python 2. As we discov-
ered last time, Python is already installed as
standard in the Raspbian distribution. How-
ever, there is no provision for the SPI inter-
face. To fix this we will need to install the
SPI Python wrapper / library, so let’s start an
LXterminal session (as shown in Figure 3)
and type the following commands:

cd ~

git clone git://github.com/doceme/
py-spidev

cd py-spidev/

sudo python setup.py install

{or
sudo apt-get install git-core

python-dev
sudo apt-get install python-pip
sudo pip install spidev)

Once installed, we’ll need to do a little house-
keeping and tell Raspbian that we intend to

Figure 2.
Pi and MCP23S17 Add-On
Board.

Figure 3.
LXTerminal.

Elektor•Post Project No. 9

elektor post | Project No. 9 | 3

ls /dev/spi*

...to check that we have two SPI devices list
(one for each SPI Chip Select signal), and
we should have:

/dev/spidev0.0
/dev/spidev0.1

Example Program: mcp23s17.py
With spidev installed we’re now going to write
a small test program to illuminate LEDs wired
to the Port Expander GPIO.

Double-click the IDLE icon on your Pi’s desktop
to start the Python Shell and IDLE (Figure 4).

Select File Option from the menu and create a
new program. This will start the IDLE editor.

In the IDLE editor, Figure 5, type the pro-
gram as shown in the Listing.

Once you’ve typed the program, make sure
you save it, then switch to an LXTerminal
session and type the following command to
make your program an executable:

chmod +x mcp23s17.py

Once done, you can run your program by
typing the following command:

sudo ./mcp23s17.py

(130211)

Quick Summary of spidev commands

spi.open (0,0) opens SPI bus 0 using CE0.

spi.open (0,1) opens SPI bus 0 using CE1.

spi.close () disconnects the object from the interface.

spi.writebytes ([array of bytes]) writes an array of bytes to SPI device.

spi.readbytes (len) reads len bytes from SPI device.

spi.xfer2 ([array of bytes]) sends an array of bytes keeping the CEx asserted the whole time.

spi.xfer ([array of bytes])
sends an array of bytes de-asserting and re-asserting the CEx with every
byte transmitted.

Listing

#!/usr/bin/python

import spidev
import time

spi = spidev.SpiDev()
spi.open(0,0)

while True:
 spi.xfer([0,0,0]) # turn all lights off
 time.sleep(1)
 spi.xfer([1,255,254]) # turn all lights on
 time.sleep(1)

Figure 4. IDLE Python Shell.

Figure 5. IDLE Editor.

Elektor•Post Project No. 9

elektor post | Project No. 9 | 4

Internet Links

[1] www.raspberrypi.org

[2] www.github.com/doceme/py-spidev

[3] www.dtronixs.com

Pin Name Pin Function Alternative RPi.GPIO

P1-02 5.0V - -

P1-04 5.0V - -

P1-06 GND - -

P1-08 GPIO14 UART0_TXD RPi.GPIO8

P1-10 GPIO15 UART0_RXD RPi.GPIO10

P1-12 GPIO18 PWM0 RPi.GPIO12

P1-14 GND - -

P1-16 GPIO23 RPi.GPIO16

P1-18 GPIO24 RPi.GPIO18

P1-20 GND - -

P1-22 GPIO25 RPi.GPIO22

P1-24 GPIO8 SPI0_CE0_N RPi.GPIO24

P1-26 GPIO7 SPI0_CE1_N RPi.GPIO26

Pin Name
Board Revision 1 Board Revision 2

Pin Function Alternative Pin Function Alternative

P1-01 3.3V - 3.3V -

P1-03 GPIO0 I2C0_SDA GPIO2 I2C1_SDA

P1-05 GPIO1 I2C0_SCL GPIO3 I2C1_SCL

P1-07 GPIO4 GPCLK0 GPIO4 GPCLK0

P1-09 GND - GND -

P1-11 GPIO17 RTS0 GPIO17 RTS0

P1-13 GPIO21 GPIO27

P1-15 GPIO22 GPIO22

P1-17 3.3V - 3.3V -

P1-19 GPIO10 SPI0_MOSI GPIO10 SPI0_MOSI

P1-21 GPIO9 SPI0_MISO GPIO9 SPI0_MISO

P1-23 GPIO11 SPI0_SCLK GPIO11 SPI0_SCLK

P1-25 GND - GND -
Note: I2C0_SDA and I2C0_SCL (GPIO0 & GPIO1) and I2C1_SDA and I2C1_SCL (GPIO2 & GPIO3) have
1.8-kΩ pull-up resistors to 3V3.

Table 1. Expansion Header Pin Out

