
The Challenges in Bringing
IoT Solutions to Market
Worries Around Security,
Scalability, and Competition

p. 70 p. 78
Preferably Wired After All
Developing a 1 Gbit/s Interface
in an Industrial Environment

First Steps with an
ESP32-C3 and the IoT
A Wi-Fi Button and Relay

p. 42

RISC-V: Build Your Own
Open-Source Processor

p. 32 What’s New in
Embedded Development?
Rust and Keeping IoT
Deployments Updated

Under Your Radar
Microcontrollers You Should
Know About

p. 15

em
bedded w

orld Special - June &
 July 2022

JUNE & JULY 2022
ELEKTORMAGAZINE.COM

* S INC E 1 961
*

FOCUS ON Embedded Development and IoT

embedded world Special

embedded
world
Special

£9.95 | €10.95 | $12.95

e-zine
Your dose of electronics

Every week that you don’t subscribe to Elektor’s e-zine
is a week with great electronics-related articles and

projects that you miss!

So, why wait any longer? Subscribe today at
www.elektor.com/ezine and also receive free

Raspberry Pi project book!

Editorial
Every Friday, you’ll receive the best
articles and projects of the week.
We cover MCU-based projects, IoT,
programming, AI, and more!

Promotional
Don’t miss our shop promotions,
every Tuesday and Thursday we
have a special promotion for you.

Partner mailing
You want to stay informed about
the ongoing activities within the
industry? Then this e-mail will give
you the best insights. Non-regular
but always Wednesdays.

What can you expect?

lektor embedded world Special 2022 3

colophon editorial

After two years of drastic pandemic measures, things are finally moving forward
with in-person trade shows. At the first events, such as PCIM and Sensor+Test,
it became clear that the whole thing was starting up again rather gently. No one
could complain about crowding in the halls. I also heard at many booths that
companies want to focus their trade show program more in the future: on one, at
most two, trade shows per year.

For Elektor and many of our partner companies — which often come from the
semiconductor, software and distribution sectors — embedded world (alongside
electronica) is right at the top of the list. And so this trade show could become a
litmus test of how much value companies still attach to a trade show appearance
and visit, which always costs a lot of time and money.

We have made up our minds on this issue — just like the companies represented
in this special. There is no substitute for a trade fair! Because only here can you get
an overview of the market in a short time, discover ingenious new solutions, look
around for sources of supply and customers, spot trends, and capture moods.

My colleagues and I will be doing just that here in Nuremberg, with lots of video
interviews and a newsroom at our booth. I would like to invite you to visit us. We
can be found in Hall 4A (4A.646)!

Elektor Magazine,

English edition

embedded world Special 2022
June & July 2022

ISSN 1757-0875 (UK / US / ROW distribution)

www.elektor.com
www.elektormagazine.com

Elektor Magazine, English edition
is published 8 times a year by
Elektor International Media

Head Office:
Elektor International Media b.v.
PO Box 11
6114 JG Susteren
The Netherlands
Phone: (+31) 46 4389444

Memberships:
E-mail: service@elektor.com
www.elektor.com/memberships

Advertising & Sponsoring:
Raoul Morreau
Phone: +31 (0)6 4403 9907
E-mail: raoul.morreau@elektor.com

www.elektor.com/advertising
Advertising rates and terms available on request.

Copyright Notice
The circuits described in this magazine are for
domestic and educational use only. All draw-
ings, photographs, printed circuit board layouts,
programmed integrated circuits, disks, CD-
ROMs, DVDs, software carriers, and article texts
published in our books and magazines (other
than third-party advertisements) are copyright
Elektor International Media b.v. and may not be
reproduced or transmitted in any form or by any
means, including photocopying, scanning and
recording, in whole or in part without prior writ-
ten permission from the Publisher. Such written
permission must also be obtained before any
part of this publication is stored in a retrieval
system of any nature. Patent protection may
exist in respect of circuits, devices, components
etc. described in this magazine. The Publisher
does not accept responsibility for failing to
identify such patent(s) or other protection. The
Publisher disclaims any responsibility for the
safe and proper function of reader-assembled
projects based upon or from schematics,
descriptions or information published in or in
relation with Elektor magazine.

© Elektor International Media b.v. 2022
Printed in the Netherlands

International Editor-in-Chief: Jens Nickel
Content Director: C. J. Abate
International Editorial Staff: Eric Bogers, Jan Buiting, Stuart Cording, Rolf Gerstendorf,

Dr Thomas Scherer, Clemens Valens
Laboratory Staff: Mathias Claussen, Ton Giesberts, Luc Lemmens, Clemens Valens
Graphic Design & Prepress: Giel Dols, Harmen Heida
Publisher: Erik Jansen

The Team

Jens Nickel
International Editor-in-Chief, Elektor Magazine

Elektor is a member of VDZ (Association of German Magazine Publishers), which
“represents the common interests of 500 German Consumer and B2B publishers.”

Elektor is a member of FIPP, an organization that has “grown over almost 100 years to
include media owners and content creators from across the world.”

No Substitute for an In-Person Fair

4 embedded world Special 2022 www.elektormagazine.com

THIS EDITION

Regulars & Features
3 Colophon

15 Under Your Radar
 Microcontrollers You Should Know About

22 CLUE from Adafruit
 A Smart Solution for IoT Projects

28 Raspberry Pi RP2040 Boards Aplenty

50 IoT Cloud a la Arduino
 Convenient Solution for Application Developers

62 MonkMakes Air Quality Kit for Raspberry Pi
 Measures Temperature and eCO2

84 Peculiar Parts
 Travelling Wave Tubes

85 Narrowband Internet of Things
 Standards, Coverage, Agreements, and Modules

90 Peculiar Parts
 Moving Coil Relays

92 Dragino LPS8 Indoor Gateway
 Speedy LoRaWAN Gateway Setup

95 Explore ATtiny Microcontrollers
 Using C and Assembly Language

100 The WinUI Graphics Framework for Windows Apps
 A Small Demo Application

108 Off-Grid Solar Systems
 Electrical Energy Independent of the Mains Grid

Volume 48, embedded world Special
June & July 2022

42

Industry
20 What Is E-Paper Display?
 How Does It Work?

32 What’s New in Embedded Development?
 Rust and Keeping IoT Deployments Updated

38 Infographics
 Facts and Figures About the Embedded Market

40 How the Industrial and Automotive sectors
Will Benefit from 5G

48 A Closer Look at WIZnet WizFi360 Module

70 The Challenges in Bringing IoT Solutions to Market
 Worries Around Security, Scalability, and Competition

76 Miniaturisation of Electronic Components and
Industrial Sensors

78 Preferably Wired After All
 Tips for Developing a 1 Gbit/s Interface in an

Industrial Environment

82 Bringing Real-Time Object Detection to MCUs with Edge
Impulse FOMO

Your First Steps with an
ESP32-C3 and the IoT
A Wi-Fi Button and Relay

Raspberry Pi
RP2040 Boards

28

lektor embedded world Special 2022 5

Next Edition
Elektor Magazine Edition 7-8/2022 (July & August 2022)
As usual, we’ll have an exciting mix of projects, circuits, fundamentals
and tips and tricks for electronics engineers and makers. We will
focus on Test & Measurement.

From the contents:
 > Autonomous Inductance Meter
 > CO2 Meter with Sigfox
 > Smart Plugs: A Look Inside and Hacked
 > Simple Analog ESR Meter
 > Get Started With Your Oscilloscope
 > Raspberry Pi Pico Makes an MSF-SDR
 > AC Grid Frequency Meter

And much more!

Elektor Magazine edition 7-8/2022 covering July & August 2022
will be published around July 7, 2022. Arrival of printed copies with
Elektor Gold Members is subject to transport. Contents and article
titles subject to change.

Projects
6 Build Your Own RISC-V Controller
 First Steps with the NEORV32 RISC-V Softcore for Low-Cost

FPGAs

42 Your First Steps with an ESP32-C3 and the IoT
 A Wi-Fi Button and Relay

56 Dual Geiger-Müller Tube Arduino Shield
 A High-Sensitivity, Very Low-Power Radiation Sensor

66 Light Switch DeLux
 A Solution for High-Precision Light-Controlled Switching

6

Build Your Own
RISC-V Controller
First Steps with the NEORV32
RISC-V Softcore for
Low-Cost FPGAs

The WinUI
Graphics Framework
for Windows Apps

100

FOCUS ON Embedded Development and IoT

6 embedded world Special 2022 www.elektormagazine.com

If you want to experiment with a RISC-V microcontroller, there are now
a number of processors that use this open standard instruction set
architecture, such as the new ESP32-C3. But you don’t need to opt
for a hard-wired chip. There are alternatives. The NEORV32 project
offers a RISC-V softcore design which you build using an FPGA. The
finished processor will be a little less powerful than a hard-wired one,
but it will give you a great deal more flexibility so that different designs
can be tested and any in-house developed peripherals can also be
integrated into your hardware. Taking this route, you will also learn a
lot, for example, about the inner workings of a CPU.

A Practical Application
Even those who have already spent some time playing with FPGAs
will quickly encounter hurdles when it comes to configuring their own
small processor design. The entire process can be quite challenging
even for experienced engineers as our series on the SCCC project by
Martin Oßmann [1] showed. Fortunately, you don’t need to start from
scratch. You can take advantage of some (almost turnkey) solutions
already developed by dedicated experts who have made there designs
freely available.

One such solution, which is also under an open-source license, will be
used here. This article is in no way a comprehensive course on RISC-V
or FPGA technology, but it should help shorten the learning curve by
showing you how to build and get your first practical application up
and running as quickly as possible.

FPGA, Synthesis, Softcore, RISC-V, and the
Compiler
Whenever you need to choose a general-purpose microcontroller for a
specific application, a range of different factors can influence your decision.
One of the most basic considerations is the variety of built-in peripherals
the controller chip offers. All these functions are fixed in the hardware of the
particular version of the chip and cannot be changed. This approach allows
manufacturers to produce low-cost chips with optimized performance.
Things are different if you design your own controller using an FPGA.

An FPGA itself consists of a bunch of logic cells, the lookup tables
(LUT), which can be flexibly interconnected via a matrix. The blocks
that exist in such a LUT are shown in Figure 1. An example is a LUT-4
element with four input signals, a truth table, a flip-flop and a multi-
plexer at the output. The truth table can be used to form any basic logic
gate such as an AND, OR, NOT or EXCLUSIVE OR. In conjunction with
the matrix within the FPGA, these components can be used to create
more complex structures such as memories, adders or multiplexers,
which in turn can be combined to form an even more complex system
such as a processor or a complete system-on-chip. The FPGA can be
compared to a box of toy building blocks that you can plug together
to build a castle, for example, and then break down to build a bridge
or some other structure, using the same bricks over and over again.

In order for the FPGA to be able to perform a specific function, it
must be configured appropriately. It is, however not necessary to

project

Build Your Own
RISC-V Controller

By Mathias Claußen (Elektor)

Want to experiment with RISC-V?
You can do so without a hard-wired chip.
Get ready to work with the NEORV32
RISC-V softcore for low-cost FPGAs.

First Steps with the NEORV32 RISC-V Softcore
for Low-Cost FPGAs

Ele
kto

r lab • Elektor lab

Elektor lab • Elektor la
b

ORIGINALORIGINAL

lektor embedded world Special 2022 7

source code are already available, including in the form of the GNU C
compiler (GCC). This means that the basic libraries are also in place.

NEORV32
The NEORV32 project by Stephan Nolting [4] shows that you do
not need to opt for an expensive FPGA in order to build your own
System on Chip (SoC). The NEORV32 is a RISC-V-compatible CPU
with all the peripherals in order to run as a microcontroller-like SoC
on an FPGA. The project is completely implemented in platform-neu-
tral VHDL and is therefore not tied to individual FPGA manufacturers.
The NEORV32 is not only completely open-source, it also comes with
extensive documentation, a software framework and tools.

The implemented peripheral modules can be seen in Figure 3. SPI, I²C
and UARTs are available as well as GPIOs, PWM units and a WS2812
interface. This gives beginners and advanced users a complete system
including a complete development environment for the NEORV32 with
all the necessary libraries for the hardware and peripherals. In addition,
sample configurations are already available for some FPGA boards, so
you can start without any major problems. But which of these boards
run “out-of-the-box”? And how difficult is it to get the NEORV32 onto
an FPGA board that is not directly supported?

painstakingly create each individual LUT by hand and connect them
in the matrix. This is the task of the FPGA synthesis tools. The desired
functionality can be described in languages such as Verilog or VHDL.
The synthesis tools can usually understand both of these hardware
description languages. The synthesis tool knows the peculiarities of
the FPGA and creates a bit stream from the description language,
which is then used to configure the FPGA. Figure 2 shows the rough
synthesis sequence for an FPGA. Most FPGA manufacturers offer
free tools that can usually work with Windows and Linux. Some
FPGAs are supported by open-source solutions that can carry out
this synthesis process and run preferably in a Unix-like operating
systems such as Linux or macOS.

An FPGA with enough LUTs can not only map simple logic functions,
but also entire processors or processor systems. These can also be
described using Verilog or VHDL. Since this processor core is not
permanently wired in the FPGA silicon. Its function or behavior can be
adapted by modifying the hardware description. The processor unit is
called a softcore. Such soft cores are available for different processor
architectures. In some cases, these soft cores also contain peripher-
als, such as bus interfaces, etc. The open-source RISC-V processor
architecture is becoming more and more popular as a softcore. The
selection of hardwired RISC-V MCUs is currently still manageable, so
initial experience with the architecture can be gained in this way. You
can create your own RISC-V MCU to test and study it.

If you use RISC-V, there are no license fees, NDAs, or other license
agreements that are usually associated with the use of other propri-
etary architectures. RISC-V also means that compilers to process C

Figure 1: Signal flow in a LUT-4.

Figure 2: Steps in the FPGA synthesis process.

Figure 3: Block
diagram showing the
NEORV32 function
blocks (Source: Github
/ Nolting, S. [20]).

8 embedded world Special 2022 www.elektormagazine.com

completely on open source tools. For this project, we will choose
the latter, open source route. In this case it means Ubuntu 20.04 LTS
will be our operating system and the OSS CAD Suite will be used to
synthesize the NEORV32 for the iCE40UP5K.

In addition to the tools for the FPGA, a demo program to run on
the synthesized RISC-V processor will also be compiled later: A
classic implementation of the ‘Hello World’ message will be sent out
using the UART. Here, too, open source tools are used to generate a
suitable tool chain (similar to that for the Kendryte K210 [10]). A GNU
C compiler (GCC) and additional libraries for the NEORV32 periph-
erals are available.

Mise en Place
As my colleague Clemens Valens demonstrated in his video [11], working
with FPGAs is a bit like preparing a meal. The first step is to make
sure you have all the ingredients and necessary utensils (tools). If you
don’t want to risk affecting your main operating system installation,
you can also implement a virtual machine. A freshly installed version
of Ubuntu 20.04 on an AMD64 system is the setup assumed here. The
use of a Raspberry Pi should also be possible, since both Ubuntu 20.04
and the Raspberry Pi OS are based on Debian, but there may be small
differences due to the architecture. For this project I used Ubuntu 20.04
running on an AMD64 machine only.

In order to synthesize the “hardware” for the FPGA, the current release
of the OSS CAD Suite [12] needs to be downloaded into the home
folder. This file is called oss-cad-suite-linux-x64-xxxxxxxx.tgz. In a
terminal, this file is now unpacked using tar -xvzf oss-cad-suite-
linux-x64-xxxxxxxx.tgz and then moved to /opt with sudo mv
~/oss-cad-suite /opt/. In order that the folder can be accessed
later, the rights are set by using chmod 777 /opt/oss-cad-suite
-R. The libgnat-9 library is also required which is installed with sudo
apt install libgnat-9. The FPGA tools are now in place.

Compiler
Next we need the files associated with the NEORV32 [4] from the
GitHub repository. To do this, we will install git by entering sudo apt
install git. The NEORV32 repository is then cloned with git clone
https://github.com/stnolting/neorv32.git ~/neorv32.

Pick an FPGA
In principle, any existing board with FPGA that offers enough resources
can be used, as the NEORV32 does not use any manufacturer-specific
extensions. One FPGA that is fitted to several inexpensive boards is
the Lattice iCE40UP5K [5].

The Lattice iCE40UP5K FPGA is currently the largest version of
the iCE40 Ultra-Plus variants. Altogether it has 5280 LUTs, 120 kBit
(15 kByte) EBR RAM, 1024 kBit (128 kByte) SPRAM and hard-wired
functional units for SPI and I²C which form a solid platform on
which you can build your own projects. It’s not only these features
that make this FPGA interesting but also the type of chip package
and its low cost. A 7 x 7 mm QFN-48 outline (Figure 4) is much
easier to work with than a chip with a BGA outline and priced at
around € 5 per chip, puts it in an interesting price bracket. Currently
(October 2021) the FPGA is listed at around € 5 to € 6 per unit at
all the distributors but unfortunately out of stock with a delivery
time of up to 46 weeks.

For our purposes you will not need to design a PCB for the FPGA. The
iCEBreaker FPGA board (Figure 5) and the iCEBreaker Bitsy (Figure 6)
from 1BitSquared [6] are two open hardware dev boards on which
the iCE40UP5K FPGA comes already mounted. Another option with
open hardware is the UPduino V3.0 [7] from tinyVision.ai (Figure 7).

The NEORV32 project fully supports the UPduino V3.0 board and
includes some additional sample projects. Any changes required for
the iCEBreaker FPGA board can be carried out very quickly. To start
off with we will use the UPduino V3.0 and then go on to show what
needs to be adapted to our example project so that it runs on the
iCEBreaker Board.

Using this FPGA gives you a SoC in with 64 kB space for applications,
64 kB RAM, SPI interface, I²C interface, 4 input and 4 output pins, 3 PWM
pins and a UART, together with the RV32IMAC core running at 18 MHz.

The Toolchain
There are two paths you can take when it comes to selecting the
toolchain for the Lattice iCE40up5k. We can install the tools from
Lattice [8] or use the OSS CAD suite from YosysHQ [9] which is based

Figure 4: The iCE40UP5K in QFN outline measuring 7x7 mm. Figure 5: iCEBreaker-Board with PMOD-Header.

lektor embedded world Special 2022 9

Now we can start the compilation process using sudo make. The
toolchain can then be found in /opt/riscv. So that everyone can access
the compiler, the rights to of/opt/riscv need to be modified. Using a
terminal you can grant everyone access with the command chmod
777 /opt/riscv -R.

For the OSS CAD Suite and the RISC-V GCC Toolchain, it is neces-
sary to make a modification of the path variable in the /etc/enviro-
ment file. Using sudo nano /etc/enviroment we can open the file
and then after PATH=" enter the string /opt/oss-cad-suite/bin:/
opt/riscv/bin: and then save the file.

Most FPGA boards use an FT232H chip from FTDI to handle the
programming interface. In order for a user to gain access to it without
root rights, an appropriate udev rule must be created for the FTDI
chip. Using the terminal enter sudo nano /etc/udev/rules.d/53-
lattice-ftdi.rules to open a new file for writing to. In this file it
is necessary to enter:

ACTION=="add", ATTR{idVendor}=="0403",

ATTR{idProduct}=="6010", MODE:="666"
ACTION=="add", ATTR{idVendor}=="0403",

ATTR{idProduct}=="6014", MODE:="666"

Then, save the file. The preparations are now complete and the synthe-
sis and subsequent upload of our first test program can begin. A reboot
should first be carried out so that all the settings take effect. Another
recommendation is to install an editor with syntax highlighting for use
with VHDL and Verilog.

NEORV32 for the FPGA
In its de-energized state, the FPGA is not configured. On power up,
the iCE40UP5K reads the connection description from an external SPI
flash. This description of the internal connections must first be stored
into the SPI flash on the UPDuino V3.0 or the iCEBreaker.

In this article, we create a sample project for the UPduino V3.0 board,
which contains the processor and peripherals. This creates a system
that should be able to run directly on the FPGA.

So that we will be able to communicate with the NEORV32 later, a
terminal program will be required. For this, I normally use HTerm by
Tobias Hammer, which has proven to be a useful tool. This program
can be downloaded from his homepage [13] with wget https://
www.der-hammer.info/terminal/hterm-linux-64.tgz. Now with
mkdir ~/hterm && tar -xvf hterm-linux-64.tgz -C ~/hterm
the contents of the tgz file will be extracted to the ~/hterm folder. So
that the serial interfaces can be accessed later by a user, they must be
added as a member to the dialout group. To do this use the terminal
and enter sudo adduser $(whoami) dialout.

The C compiler itself now needs to undergo a process of compilation.
In the examples for the iCE40up5k, the NEORV32 is configured as
RV32IMAC, so that commands for integer multiplication and division
are available (see also the RISC-V Naming Convention box). The
compiler must be compiled in accordance with this particular archi-
tecture and the command extensions; you can read in the NEORV32
[14] documentation why this adaptation is important.

Using a terminal, first go to the home folder using cd ~ and enter
git clone https://github.com/riscv/riscv-gnu-toolchain
--recursive to clone the RISC-V Toolchain. We will also need some
additional packages which can be installed using the following:

sudo apt-get install autoconf automake autotools-dev

curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk
build-essential bison flex texinfo gperf libtool
patchutils bc zlib1g-dev libexpat-dev

Finally, the compiler and libraries can be compiled.

With RISC-V CPU models a hierarchy exists in terms of the supported
commands. This means that code compiled for an RV32I processor
model will also be able to run on an RV32IMAC model, but not the
other way around. Therefore, the recommendation is to first compile the
toolchain so that it is compatible to the lowest common denominator
model. Using the terminal, we can switch to the directory containing
the cloned toolchain with cd ~/riscv-gnu-toolchain and then
use ./configure --prefix=/opt/riscv --with-arch=rv32i
--with-abi=ilp32 to preconfigure the toolchain for compiliation.

Figure 6: iCEBreaker Bitsy (Source: https://cdn.shopify.com/s/
files/1/1069/4424/products/IMG_3859_large.jpg / 1BitSquare).

Figure 7: The UPduino V3.0 with pin header strips fitted.

10 embedded world Special 2022 www.elektormagazine.com

21
01

75
-0

29

U
SB

U
SB

GND
RXD
TXD
3V3
VCC
5V

6
5

4
3

2
1

C
H

34
0

M
O

D
2

D
O

N
E

G
N

D
12

M

SC
K

GND

G
N

D
3V

3

R
ST VI
O

G
N

D

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

46 47 45 48 44 11 18 19 13 21 12 10 20 50 51 55

49
5V

50

28 38 42 36 43 34 37 31 35 32 27 26 25 23 5V

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

1 2 3 4 5 6 7 8 9

2 3 4 6 9

B G R

U
pd

ui
no

 3
.0

M
O

D
1Figure 10: Connections

between the UPduino and
the USB/serial adapter.

ram (rwx) : ORIGIN = 0x80000000, LENGTH =
DEFINED(make_bootloader) ? 512 : 64*1024 (Figure 8)

The RISC-V compiler is now ready for use. In an open terminal you
can go to the folder of the Hello World program by entering:

cd ~/neorv32/sw/example/hello_world

To generate an executable file that can be loaded into the NEORV32,
you just need to enter make exe to generate the neorv32_exe.bin
file (Figure 9). In order for the NEORV32 to be able to be executed,
it should now be uploaded to the board. The integrated bootloader
is used for this and receives data via the UART (19200 baud, 8 data
bits, 1 stop bit, no parity, no flow control). If a UPduino V3.0 board is
used, an external USB-to-serial converter will be required, such as
the CH340-based one from the Elektor Store. (Refer to the Related
Products text box.) This must be connected as shown in Figure 10.

HTerm is used for the upload itself. This can be started from a
terminal with ~/hterm/hterm a window like in Figure 11 should
appear. The USB-to-serial converter must now be selected as the
port, which usually reports itself as /dev/ttyUSB0; depending on
the hardware configuration and the selected adapter, however,
this may be different.

After connecting to the USB serial adapter, the UPduino can be supplied
with voltage and the bootloader message should be visible (Figure 12).
If a character is not sent to the bootloader in time, it tries to autoboot
from the SPI flash, which currently does not contain any software.
Any character sent within 8 seconds of starting the bootloader will
switch it into command mode. A u must then be sent to activate the
upload in the bootloader and the Select File button must be clicked
in HTerm. As can be seen in Figure 13, select the file neorv32_exe.bin
in the ~/neorv32/sw/example/hello_world folder and then upload it.
When everything is finished, the bootloader reports an OK as shown
in Figure 14 and the program can be executed by entering e.

In a terminal you now have to change to the example directory for the
open-source tools with cd ~/neorv32/setups/osflow/. In order
to start the synthesis and thus the creation of the bit stream for the
FPGA, we just need to enter make BOARD=UPduino UP5KDemo as a
command, after that it can take a little while until the process of synthe-
sis is complete. Now in the ~/neorv32/setups/osflow/ folder a file
named neorv32_UPduino_v3_UP5KDemo.bit has been created. The
bit stream contained in this file describes how the basic logic blocks
must be interconnected in the FPGA. This bit stream now needs to
be written into the SPI flash on the FPGA board.

Now we can hook up the UPduino board to the PC via a USB cable. In
the terminal we enter iceprog ~/neorv32/setups/osflow/neorv32_
UPduino_v3_UP5KDemo.bit. This starts the programming of the exter-
nal SPI flash, and the configuration is then loaded into the FPGA. This
means that we now have a RISC-V system configured in the UPduino
V3.0, which we can now supply with software.

As mentioned at the beginning, 64 KB of memory is available for appli-
cations and 64 KB is available as RAM. For the peripherals we have
an SPI interface, I²C, a UART, four inputs and four outputs, as well
as three PWM outputs. The CPU synthesized here is an RV32IMAC
model that runs at 18 MHz. The SoC in the FPGA also has a small
bootloader that can be accessed via the UART.

Hello World
The FPGA is now equipped with the NEORV32 and the first Hello World
demo can be compiled and uploaded to the RISC-V. The NEORV32 is
configurable so the current size of the RAM must be defined appro-
priately in the linker script. To do this, use the terminal to enter nano
~/neorv32/sw/common/neorv32.ld and in line 62:

ram (rwx) : ORIGIN = 0x80000000, LENGTH =

DEFINED(make_bootloader) ? 512 : 8*1024

In exchange for:

Figure 8: Changes necessary to configure the RAM size.

Figure 9: NEORV32_exe.bin is created.

lektor embedded world Special 2022 11

Figure 11: An open HTerm window. Figure 12: The NEORV32 bootloader.

Figure 13: Dialog to upload neorv32_exe.bin.

Figure 15: ‘Hello World’ from the NEORV32.

Figure 14: A successful upload.

12 embedded world Special 2022 www.elektormagazine.com

The result can be seen in Figure 15. The program has not been stored
in the SPI flash, but into the RAM-based “ROM” of the NEORV32. This
extends the service life of the SPI flash by cutting down on the number
of write cycles. The disadvantage of this configuration is that, each
time the NEORV32 is restarted, the program needs to be uploaded
again. If the program is to be loaded automatically, the bootloader must
upload it to the SPI flash. In addition to the basic “Hello World” demo,
there are other examples to discover, including a complete FreeRTOS,
which has already featured in Elektor [15]. It is worth taking a look at
the ~/neorv32/sw/example folder, where several other examples can
be found in their own folders.

A New iCE40UP5K FPGA Environment
Using the iCEBreaker Board will demonstrate how the NEORV32 can
also be adapted to other iCE40up5k boards. The features of the SoC
itself are not changed here, but the pinout assignment on the FPGA
is adapted so that an iCEBreaker board can be used and a suitable
bit stream will be generated.

To do this, the Makefile in ~/neorv32/setup/osflow needs to be edited.
The file is opened using your text editor of choice and the new board
is added as the target. For the iCEBreaker board we write the follow-
ing in line 72:

iCEBreaker:
$(MAKE) \
BITSTREAM=neorv32_$(BOARD)_$(DESIGN).bit \
NEORV32_MEM_SRC="devices/ice40/neorv32_imem.ice40up_

spram.vhd devices/ice40/neorv32_dmem.ice40up_spram.
vhd" \

run

This ensures that the board is referenced in the primary Makefile.
Also in ~/neorv32/setup/osflow/boards an iCEBreaker.mk file with
the following contents is required:

.PHONY: all

all: bit
echo "! Built $(IMPL) for $(BOARD)"

The Makefiles are thereby prepared but two VHDL-files are still missing.

In ~/neorv32/setup/osflow/board_tops/ the files neorv32_iCEBreaker_
BoardTop_UP5KDemo.vhd and neorv32_iCEBreaker_BoardTop_
MinimalBoot.vhd must be generated. Since their contents are almost
identical to that of the neorv32_UPduino_BoardTop_UP5KDemo.vhd
and neorv32_UPduino_BoardTop_MinimalBoot.vhd files, they can just be
copied and renamed. This should be done using a terminal and entering:

cp ~/neorv32/setups/osflow/board_tops/neorv32_UPduino_

BoardTop_MinimalBoot.vhd
~/neorv32/setups/osflow/board_tops/neorv32_iCEBreaker_

BoardTop_MinimalBoot.vhd

And:

cp ~/neorv32/setups/osflow/board_tops/neorv32_UPduino_

BoardTop_UP5KDemo.vhd
~/neorv32/setups/osflow/board_tops/neorv32_iCEBreaker_

BoardTop_UP5KDemo.vhd

A few changes need to be made to the two files neorv32_
iCEBreaker_BoardTop_UP5KDemo.vhd and neorv32_iCEBreaker_
BoardTop_MinimalBoot .vhd . In f i le neorv32_iCEBreaker_
BoardTop_UP5KDemo.vhd must line 42 in entity neorv32_
iCEBreaker_BoardTop_UP5KDemo is and line 68 in architecture
neorv32_iCEBreaker_BoardTop_UP5KDemo_rtl of neorv32_
iCEBreaker_BoardTop_UP5KDemo is be changed. In the file
neorv32_iCEBreaker_BoardTop_MinimalBoot.vhd line 42 in entity
neorv32_iCEBreaker_BoardTop_MinimalBoot is and line 54 in
architecture neorv32_iCEBreaker_BoardTop_MinimalBoot_
rtl of neorv32_iCEBreaker_BoardTop_MinimalBoot is are
to be changed. The last step is for the iCEBreaker.pcf Constraints-
File to be placed in ~/neorv32/setups/osflow/constraints/. The
contents of the file can be seen in Listing 1. ICEBreaker.pcf defines
which function should be routed to which pin of the FPGA. This
also directly integrates the USB/serial converter, which is on the
iCEBreaker board, and routes the buttons and LEDs on the IO pins
of the NEORV32. One thing that is missing is the reset button. Even
though it is already defined in the constraints file, its function is
not referenced here.

With all the necessary changes made, we can generate a bit stream
just like we did with the UPduino board. For this we need a terminal
and enter cd ~/neorv32/setups/osflow to get to the osflow folder.
Using make BOARD=iCEBeaker UP5KDemo we can start the make
process. To upload the bitstreams to the iCEBreaker (just like we did
in the UPduino) we can use iceprog ~/neorv32/setups/osflow/
neorv32_iCEBreaker_UP5KDemo.bit.

Uploading the software for the NEORV32 is also taken care of by the
integrated bootloader. Using this board we will not need an exter-
nal USB/serial converter; instead, we use the second channel of the
converter integrated on the iCEBreaker board.

A Reset Button for the NEORV32
To restart the NEORV32, the power supply needs to be briefly discon-
nected and then reconnected. This gets to be a bit annoying eventually,
and since the iCEBreaker has enough buttons, one of them can be

RISC-V Naming Convention
RISC-V is a generic term for the different architecture variants.
Our Elektor colleague Stuart Cording wrote a nice article (“What
is RISC-V,” Elektor 7-8/2021, [2]) in which the details are explained
in more detail. RISC-V describes an ISA in which the processors
are categorized as 32, 64 or 128 bit versions. A 32-bit processor
has a designation that starts with RV32 for 32 bits, so that an RV64
indicates a 64-bit processor. In addition, after RV32 or RV64, there
are a number of letters that indicate which commands and exten-
sions the processor can handle. These letters range from A to Z;
their meaning can be looked up in the current RISC-V specifica-
tion [3]. The performance of the processors differ according to the
supported commands and extensions.

lektor embedded world Special 2022 13

Figure 16: Connection of the uButton reset to the PLL reset input.

Listing 1: iCEBreaker.pcf

#UART (uart0)
ldc_set_location -site {9} [get_ports uart_txd_o]
ldc_set_location -site {6} [get_ports uart_rxd_i]

#SPI - on-board flash
ldc_set_location -site {14} [get_ports flash_sdo_o]
ldc_set_location -site {15} [get_ports flash_sck_o]
ldc_set_location -site {16} [get_ports flash_csn_o]
ldc_set_location -site {17} [get_ports flash_sdi_i]

#SPI - user port
ldc_set_location -site {43} [get_ports spi_sdo_o]
ldc_set_location -site {38} [get_ports spi_sck_o]
ldc_set_location -site {34} [get_ports spi_csn_o]
ldc_set_location -site {31} [get_ports spi_sdi_i]

#TWI
ldc_set_location -site {2} [get_ports twi_sda_io]
ldc_set_location -site {4} [get_ports twi_scl_io]

#GPIO - input
ldc_set_location -site {18} [get_ports {gpio_i[0]}]
ldc_set_location -site {19} [get_ports {gpio_i[1]}]
ldc_set_location -site {20} [get_ports {gpio_i[2]}]
ldc_set_location -site {28} [get_ports {gpio_i[3]}]

#GPIO - output
ldc_set_location -site {25} [get_ports {gpio_o[0]}]
ldc_set_location -site {26} [get_ports {gpio_o[1]}]
ldc_set_location -site {27} [get_ports {gpio_o[2]}]
ldc_set_location -site {23} [get_ports {gpio_o[3]}]

#RGB power LED
ldc_set_location -site {39} [get_ports {pwm_o[0]}]
ldc_set_location -site {40} [get_ports {pwm_o[1]}]
ldc_set_location -site {41} [get_ports {pwm_o[2]}]

#Reset
ldc_set_location -site {10} [get_ports
{user_reset_btn}]

used as a reset. We can use the uButton near the micro-USB socket
on the board, which is connected to pin 10 of the FPGA.

The NEORV32 has an internal reset input which is connected to the “lock”
output from the system PLL. When the PLL goes out of lock, it issues a
reset to the NEORV32. The cleanest solution would be to gate the user
reset signal from the button together with the lock signal so that either
would issue a reset to the NEORV32. The quick and dirty solution is to
just use the reset input of the PLL. Figure 16 shows the connection of
the uButton with this input. Now when the PLL is reset, the NEORV32
is also reset, since the lock_o signal goes low when PLL is reset.

In order to incorporate this change into the UP5K-demo project, it will
be necessary to insert one line and then make a change to another

line in the neorv32_iCEBreaker_BoardTop_UP5KDemo.vhd file residing
in the ~/neorv32/setups/board_tops folder. After line 44, insert the
new line user_reset_btn : in std_ulogic;. Line 130 now needs
to be changed to RESETB => user_reset_btn,. Be careful, a syntax
error will occur if you forget the comma at the end. The uButton is
now configured to function as a reset. Finally, to make the changes,
a new bit stream must be generated in the UP5K-Demo and loaded
into the iCEBreaker FPGA.

Outlook
No doubt we could dedicate a whole book on the subject of RISC-V,
FPGA, and also the NEORV32. The iCE40UP5K is an inexpensive
choice for beginners, if only the chip were more widely available. The
two boards used in the article are not the only ones that use this FPGA.

14 embedded world Special 2022 www.elektormagazine.com

WEB LINKS

[1] M. Ossmann, “The SCCC project (1),” Elektor 3-4/2019: https://www.elektormagazine.com/magazine/elektor-88/42444
[2] S. Cording, “What is RISC-V,” Elektor 7-8/2021: http://www.elektormagazine.com/magazine/elektor-179/59732
[3] RISC-V Specification: http://riscv.org/technical/specifications/
[4] NEORV32 GitHub Repository: http://github.com/stnolting/neorv32/
[5] Lattice iCE40UltraPlus Product page: http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
[6] iCEBreaker GitHub Repository: http://github.com/icebreaker-fpga/icebreaker
[7] UPduino GitHub Repository: http://github.com/tinyvision-ai-inc/UPduino-v3.0
[8] Lattice Radiant: http://www.latticesemi.com/LatticeRadiant
[9] YosysHQ oss-cad-suite-build : http://github.com/YosysHQ/oss-cad-suite-build
[10] Setup a toolchain for the Kendryte K210, Elektor Labs:

http://www.elektormagazine.com/labs/setup-a-toolchain-for-the-kendryte-k210-1
[11] Linux-flavored Snickerdoodles with Zynq, ElektorTV: http://www.youtube.com/watch?v=EE4yYZ-FEoQ
[12] YosysHQ oss-cad-suite-build Releases: http://github.com/YosysHQ/oss-cad-suite-build/releases
[13] HTerm: http://www.der-hammer.info/
[14] NEORV32 - Build the Toolchain from scratch: http://stnolting.github.io/neorv32/ug/#_building_the_toolchain_from_scratch
[15] W. Gay, “Practical ESP32 Multitasking,” Elektor 1-2/2020: http://www.elektormagazine.com/magazine/elektor-139/56997
[16] LiteX: http://github.com/enjoy-digital/litex
[17] RISCBoy : http://github.com/Wren6991/RISCBoy
[18] OK-iCE40Pro Handheld: http://github.com/WiFiBoy/OK-iCE40Pro
[19] PicoStation3D: http://github.com/Wren6991/PicoStation3D
[20] Nolting S., The NEORV32 RISC-V-Processor, GitHub repository 2020:

http://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/neorv32_processor.png

RELATED PRODUCTS

 > Alchitry Cu FPGA Development Board
(Lattice iCE40 HX) (SKU 19640)
www.elektor.com/19640

 > CH340 USB to TTL Converter UART Module CH340G
(3.3 V/5.5 V) (SKU 19151)
www.elektor.com/19151

 > M. Dalrymple, Inside an Open-Source Processor
(Elektor 2021) (SKU 19826)
www.elektor.com/19826

There is at least a handful of other platforms. From the Raspberry Pi
add-on to the complete handheld console, many options are available.
The various tools and projects applicable to this FPGA are also worth
investigating. Examples are LiteX [16], with which your own SoC can be
put together like in a construction kit and is not necessarily limited to
RISC-V, the RISCboy [17] by Luke Wren, who provides a Gameboy-like
system in the FPGA, and the OK-ice40-PRO [18] gamepad console.

Should the procurement situation improve, there will certainly be
additional projects and ideas for the iCE40UP5K. A small games
console built using an iCE40UP5K together with a Raspberry Pi RP2040
already seems to be in the pipeline [19].

 210175-01

Contributors
Text and images: Mathias Claußen
Editor: Jens Nickel
Translation: Martin Cooke
Layout: Harmen Heida

Questions or Comments?
Do you have any technical questions or comments relating to this
article? Contact the author at mathias.claussen@elektor.com or
contact the Elektor team at editor@elektor.com.

lektor embedded world Special 2022 15

background

By Clemens Valens (Elektor)

The global micrcontroller market is more diverse than
many people think. Let’s take a look at some of the

microcontrollers and manufacturers that are not often seen
in Elektor. You might find one or more of them useful in a

future project.

The choice of microcontroller for an Elektor
design is mostly based on the availability
of low-cost software development tools
and device programmers and the possi-
bility for individuals to buy it. As a result,
many electronics enthusiasts have a rather
limited view of the microcontroller market
worldwide. There is much more out there
than the PIC, AVR, ARM or ESP devices we
encounter so often in DIY projects. Let’s
have a look at some of the MCUs that live
in your blind spot.

It All Started With Four Bits
Introduced in 1971, the Intel 4004 is said to
be the first commercially produced micro-
processor (more about it can be found in
our Elektor Industry Special about 60 years
of electronics [1]). It was a 4-bit device.
Together with its support chips it formed
the MCS-4 family. It was followed up by the
MCS-40 family with 4040 CPU. Texas Instru-
ments’s first successful microcontroller (not
a microprocessor), the TMS1000 from 1974,
also was a 4-bit device that, like the 4040,
found its way into many pocket calculators.

In a world where microcontroller manufac-
turers seem to strive for data words as wide
as possible, 64 bit is not uncommon, you
would be surprised by the number of 4-bit
microcontrollers that are still being used
today. But why? The answer is probably a
mix of legacy, power consumption and cost
reasons.

A 4-bit MCU can be built with fewer transis-
tors than devices with a wider word width.
Therefore, all other things equal, they
consume less power which helps increas-
ing battery life. Fewer transistors also
means less space and so a 4-bit core can be
crammed on a corner of a chip when space
for a larger core is lacking. As a die it can be
smaller too, saving costs (even though one
might wonder how much).

High-volume applications like calcula-
tors, timers, clocks and watches, bicycle
computers, toys and remote controls
make use of 4-bit MCUs and have done so
for many years. As manufacturers usually
avoid modifying products that have proven

themselves in the field – if it ain’t broke,
don’t fix it – this explains why there still is
a market for such devices.

In case you would like to try out a 4-bit
microcontroller, have a look at the NY...
families from Taiwan-based Nyquest. Devel-
opment tools can be downloaded for free
(Figure 1). Other manufacturer examples
are EM Microelectronic from Switzerland,
CR Micro from China and Tenx Technology
from Taiwan.

8051
Before ARM became the main MCU core
provider for almost every semiconductor
manufacturer on the planet, there was
the 8-bit 8051. Created by Intel in 1980 as
MCS-51, the core (Figure 2) was licensed to
several competitors, and it found its way
into a plethora of products. Many of these
products or their derivatives, variants, and
siblings are still being produced today, and,
40 years after its introduction, 8051-deriv-
atives are actively designed into new
products.

Under
Your

Radar
Microcontrollers You
Should Know About

16 embedded world Special 2022 www.elektormagazine.com

Furthermore, 8051 users have developed a
lot of software and know-how during this
period, and you don’t throw that away just
because a better microcontroller comes
along.

Finally, the 8051 core has become very
cheap, if not free, making it an interesting
option for semiconductor manufacturers
trying to create ultra-low-cost devices. They
don’t always mention it in the data sheet,
but if it says something like “1T instruction
cycle” you can safely assume an 8051 deriv-
ative. The original 8051 consumed 12 clock
cycles (called ‘12T’) for most instructions
whereas the most modern ones only
require one (hence the ‘1T’). Besides
needing fewer clock cycles per instruction,
program execution is also (much) faster
as some of these modern devices run at
frequencies of up to 450 MHz instead of the
12 MHz of the original. Therefore, modern
8051 MCUs make for cheap yet powerful
8-bit microcontrollers.

Today, the main inconvenience of the
8051 is probably its incompatibility with
modern programming languages like C and
C++ due to its weird memory structure. To
get the most out of it you need a commer-
cial toolchain from Keil or IAR or similar
compiler pros. The popular GCC toolchain
that has been ported to all sorts of micro-
controllers has no support for the 8051.
The free toolchain SDCC does a somewhat
reasonable job but is far from perfect.
Programming the 8051 in assembler is, of
course, also an option. You prefer Pascal?
Have a look at Turbo51 [2].

You may find 8051-based MCUs in low-cost
high-quantity products like toys, PC
keyboards and mice, toothbrushes, home
appliances, remote controls, etc., mainly
from Asia where the 8051 appears to be
particularly popular. Silan, SiGma Micro,
SinoWealth, Silicon Laboratories, Sonix,
STC, and SyncMOS (listed only those start-
ing with ‘S’) all make them.

If you too would like to have a play with
a modern 8051 derivative, check out the
CH55x family from WCH. They are cheap
and documented in Chinese only, but they

Figure 1: The NYIDE 4.40 from Nyquest shows that 4-bit microcontrollers can have modern
IDEs too.

Figure 2: This is the basic architecture of what may very well be the world’s most
used microcontroller core, the 8051. (Source: Intel)

lektor embedded world Special 2022 17

up to 50 MHz, or the Z8 and eZ8 Encore!.
The latter is found in, for example, the
ZMOTION product line, a family of MCUs
optimized for PIR motion detection.

If you want to get your hands dirty, you
might want to have a go at the Z8FS040BSB
with its 4 KB of flash memory and five GPIO
pins in a convenient 8-pin SOIC package.
Note that the free compiler SDCC supports
several Z80-based MCUs like those from
Rabbit (now Digi) and the Nintendo
Gameboy.

Ultra-Low-Cost Devices
Many electronic products containing micro-
controllers are produced in massive quanti-
ties. Think for instance about home appli-
ances, clocks, electric toothbrushes, e-cig-

have a USB interface that allows easy device
programming, and they are supported
by open-source projects. Turn it into an
Arduino? See for instance [3].

Golden Oldies & Die Hards
Like the 8051 from 1980, there are still
some other processor cores around from
that period, notably the 6502 and the Z80,
but also the somewhat more recent 68000
by Motorola (now NXP). The Z80 and the
CMOS version of the 6502, the W65C02, are
still produced and actively supported by
their creators Zilog and WDC respectively
(WDC created the W65C02, not the 6502).
The 68000, on the other hand, seems to be
mostly kept alive to support legacy appli-
cations (but who knows how many compa-
nies have taken out a license?).

6502
The 6502 was used in several famous
early computers like the Commodore 64,
Apple II, and BBC Micro, and has been very
successful indeed (Figure 3). Its improved
and low-power CMOS version is still going
strong even though they are rather expen-
sive. The reason for this is that most users
only license the core to use inside FPGAs,
ASICs and similar custom chips. Since
this is all confidential, it is hard to find
out which devices are concerned.

However, WDC does produce packaged
chips that you can try out. An example
is the W65C265S microcontroller with a
16-bit W65C816S CPU that is fully compat-
ible with the 8-bit W65C02S and that runs
from as little as 1.8 V. Controller modules
exist too, and even a companion’s board
with Seeed Studio Grove, Sparkfun QWIIC,
and MikroE Click connectors.

Z80
The Z80 is another highly success-
ful processor from the late seventies,
early eighties of the previous century.
Zilog developed the core in 1975 and the
company still produces it. It has been
licensed to and was copied and cloned
by many other manufacturers world-
wide which has resulted in a huge user
base. Several families have seen the
light, like the eZ80 that runs from clocks

Figure 4: A few examples of applications made possible by ultra-low-cost microcontrollers.
(Source: Holtek.com)

Figure 3: The Commodore 64, one of the famous home computers from the
1980s, has a 6502 inside. (Source: ralfsfotoseite @ Pixabay)

arettes, Corona virus testers, smart cards,
smoke detectors, toys, etc. (Figure 4). To get
an idea of the figures: gaming consoles like
the Nintendo Gameboy, Wii and Switch have
all passed 100 million units sold. Imagine
what the numbers are for, say, smart cards.
Saving a cent on the costs of such a product
is huge and so there is a large market for
ultra-cheap microcontrollers.

Some of these microcontroller manufac-
turers that have come to the attention of
electronics amateurs are Padauk, MDT, and
Holtek.

Padauk
Padauk makes 3-cent one-time program-
mable (OTP) and flash-based MCUs. The
particularity of their devices is the archi-

18 embedded world Special 2022 www.elektormagazine.com

MDT
As said before, MDT a.k.a. Micon Design
Technology makes (made?) clones or
derivatives of Microchip’s PIC devices. As
PIC MCUs are popular amongst makers,
MDT devices have attracted some atten-
tion. However, while doing research for
this article their website suddenly went
offline. Searching the internet for MDT
devices produces several results for MCU
cracking and reverse engineering services
of, amongst others, MDT devices, suggest-
ing that they are widely used.

Holtek
A few Holtek products have been used in
the past in Elektor projects. These were
not microcontrollers but keyboard- and
RC channel decoders. However, they also
make MCUs, and lots of them too, from
8051 types to ARM Cortex-M0 and M3
and devices based on their own core. As
many of the low-cost MCU providers do,
the Holtek product line too is divided in
application-specific and general-purpose
(“I/O-type”) MCUs. Documentation is good
and the HT-IDE3000 IDE (assembler and C)
is free (although somewhat hard to find),
but a Holtek programmer is needed.

A device I found interesting is the
HT66F4550 analog MCU which integrates
two opamps and has an audio output.

What About the Big Ones from
Asia?
Elektor has published hundreds of microcon-
troller-based projects, and most of the time
they contained a PIC or AVR device from
Microchip (and formerly Atmel), an ESP

tecture based on FPPs (Field-Programmable
Processing units). These are register banks
with a program counter, stack pointer,
accumulator and flag register that allow
for fast context switching. This is useful
for e.g. interrupt handling and multitask-
ing. They remind a bit of the 8051’s four
register banks. However, as most of their
products only have one FPP (some have two,
the PFC460 has four, while the MCS11 has
eight) they are just basic MCUs.

The PMS150 is a good place to start. An
excellent write-up of these devices can be
found at [4]. SDCC (once more) supports
the PDK14 and PDK15 while support for
the PDK13 is being worked on.

Figure 6: The K1830BE91T from NIIET
has an 8051 core and is functionnally
equivalent to Microchip’s AT89C2051.
(Source: https://niiet.ru)

device from Espressif or an MCU with an ARM
core from NXP or ST. The MSP430 from Texas
Instruments also made a few appearances.
Except for Espressif, all these manufactur-
ers are European and American. This shows
how biased we are as there are many big Asian
companies that produce MCUs.

Renesas
One of the largest, if not the largest Asian
semiconductor manufacturer is Renesas,
built out of NEC, Hitachi, and Mitsubi-
shi divisions. Some even claim that it is
the world’s number one MCU provider.
Long-time Elektor readers might remem-
ber the R8C and R32C/111 article series from
some 15 years ago [5]. The recent RX671
family of 32-bit microcontrollers special-
izes in fast real-time control and contact-
less human-machine interfacing (HMI) by
proximity switches and voice recognition, a
perfect fit for modern hygienic HMI designs.
Renesas also provides a large number of
other development and evaluation boards,
and I encourage you to give them a try and
report your findings.

Nuvoton
Spun off from Winbond in 2008, Nuvoton
acquired Panasonic’s agonizing chip
division in 2020. They have a large offering
of 8051- and ARM-core MCUs, and also a few
proprietary core devices. Contrary to many
competitors, Nuvoton does not have their
own toolchain. For the 8051 devices, they
rely on Keil and IAR while the ARM parts
use Eclipse. On GitHub you can find support
for using SDCC with some Nuvoton devices.

The NuMaker Uno (Figure 5) is a good way
to get started with Nuvoton. It is an Ardui-
no-compatible board with a NuMicro
NUC131 ARM Cortex-M0 controller. It also
comprises a detachable Nu-Link debugger/
programmer module that can be used with
other devices as well. Software support can
be found on GitHub (OpenNuvoton). Check
out the NuMaker repository for support for
mbed, Arduino, MicroPython and more.

Russian MCUs?
To complete this article, I wanted to add
some information about Russian micro-

Figure 5: The Nuvoton NuMaker Uno board has a detachable
NuLink programmer/debug module.
(Source: https://danchouzhou.blogspot.com)

lektor embedded world Special 2022 19

controllers. Unfortunately, I do not read Russian, yet most websites
are in Russian, and this makes finding useful information difficult.
I did come across Milandr, Mikron and fabless Syntacore who are
all doing RISC-V-based controllers. According to [6], Milandr also
has a license for ARM cores, but their website doesn’t mention
such parts.

NIIET produces the K1921VK01T which is targeted at motor control
and smart metering applications and is built around an ARM
Cortex-M4F core. OpenOCD has support for this MCU. In October
2021 NIIET announced a RISC-V-based controller to replace the
STM32- and MSP430 parts that are currently being used in “civil-
ian equipment” (as they call it) in Russia. They also have 8- and
16-bit RISC MCUs and a few MCS-51 (Intel 8051) and MCS-96 (Intel
80196) devices (Figure 6).

A World of Options
This article presented a few microcontrollers and manufacturers
that are not often seen in Elektor projects, yet they represent an
important part of the global MCU market. Of course, this article is
far from complete, and some interesting devices or manufacturers
may have been missed. While researching this article, I compiled
a list of more than 50 active microcontroller manufacturers, and
I am sure there are many more. If you know of other unknown
yet interesting devices that you would like to share with the other
readers, please let me know.

210630-01

Contributors
Idea & Text: Clemens Valens
Editor: Jens Nickel and C. J. Abate
Layout: Harmen Heida

Questions or Comments?
Do you have technical questions or comments about his article?
Email the author at clemens.valens@elektor.com or contact Elektor
at editor@elektor.com.

WEB LINKS

[1] Stuart Cording, “The Birth of the Microprocessor,” Elektor Industry 03/2021:
www.elektormagazine.com/magazine/elektor-241/60042

[2] Pascal for 8051: https://turbo51.com/
[3] CH55xduino: https://github.com/DeqingSun/ch55xduino
[4] Padauk PMS150: https://jaycarlson.net/2019/09/06/whats-up-with-these-3-cent-microcontrollers/
[5] Gunther Ewald, “The R8C Family,” Elektor 01/2006: https://www.elektormagazine.com/magazine/elektor-200601/18155
[6] Russian microcontrollers: https://geek-info.imtqy.com/articles/M4836/index.html

RELATED PRODUCTS

 > Book: Mastering Microcontrollers Helped by Arduino
(SKU 17967)
www.elektor.com/17967

 > Raspberry Pi RP2040 Microcontroller (SKU 19742)
www.elektor.com/19742

 > Book: ARM Microcontroller Projects (SKU 17620)
www.elektor.com/17620

Both the 4004 and 4040
were designed by Federico
Faggin. Which other famous
processors did he design as

well?

Intel 8080, Zilog Z8 & Z80

20 embedded world Special 2022 www.elektormagazine.com Partner Content

What Is E-Paper?
E-paper displays can be made using differ-
ent types of technology, such as electropho-
resis, electrowetting, and electrochromism
[1]. At Ynvisible, we use electrochromism, as
it allows us to use highly scalable, flexible,
and cost-effective screen-printing production
processes, whereas some display companies,
such as E Ink, use electrophoresis (see below).

Electronic paper or e-paper is a display
technology that mimics the appearance
of ordinary ink on paper to produce a
low-power, paper-like display. E-paper
displays typically have a so-called image
memory, which means they do not need
much power to maintain the display; they
mostly need power when there is a change
in the display. Therefore, e-paper displays
are best for low-frequency switching
displays, such as signage and labels.

E-paper displays reflect light rather than
emit light, making them very comfortable
to read even under direct sunlight. They
are extremely popular because of their
low power consumption, high reflectivity,
high contrast, readability, thickness, and
wider viewing angle. E-paper displays are
widely used in e-readers, real-time bus
arrival information, electronic shelf label
(ESL) segments, digital menu boards, traffic
signs and logistics monitoring devices.

How Does E-Paper Work?
Several e-paper technologies create e-paper
displays, and each works differently.

Electrophoretic Displays (e.g., E Ink)
Electrophoretic displays from, for instance, E
Ink, contain millions of tiny microcapsules.
These microcapsules are filled with a clear
fluid having small particles of different

colors and electric charges. On applying a
positive charge, negatively charged parti-
cles move to the top, and positively charged
particles move to the bottom of the micro-
capsule and vice versa. This movement of
the particles to the top and bottom makes
the surface display a specific color.

Electrowetting Displays (e.g., Etulipa)
Etulipa is one of the companies employ-
ing electrowetting display technology,
which uses the liquid’s surface tension
to create electrowetting displays. An
electrowetting display contains several
tiny cells of transparent polar liquid
and a colored oil covering a hydropho-
bic surface. The oil contracts into a small
droplet by applying a low voltage to the
cells. It then creates an open or closed
optical switch capable of displaying text,
art, photos, or even video.

What Is E-Paper Display?
How Does It Work?

Contributed by Ynvisible

Electronic paper, or an e-paper display, has many benefits over traditional display
technologies like LCD and LED. As a result, e-paper display technology is widely used across
different sectors. But, what is e-paper display technology and how does it work? In this
article, we will look at how electronic paper works and its advantages.

background

Figure 1: Ynvisible’s displays are produced
using processes that are highly scalable and
cost-effective.

Figure 3: The most popular application of
e-paper is e-readers.

Figure 2: Ynvisible’s displays are flexible
and lightweight.

Partner Content

lektor embedded world Special 2022 21Partner Content

your exacting brand requirements.

E-paper displays have been around for
many years now. E-paper display mainly
started off being used in e-book readers
but has found use in many more applica-
tions across different industries due to its
low-power, low-weight and flexible proper-
ties (Figures 3 to 7) [3][4].

Get started with Ynvisible’s e-paper displays
today with our E-Paper Display Kit [5] —
it’s the best way to trial the technology and
work out if it’s right for you. Interested
developers will find informations about
driving the displays at [6].

220273-01

sunlight, a common flaw found with other
display types.

4. Readability
E-paper displays have excellent readability
because of their wider visibility angle and
high contrast, making them ideal for import-
ant announcements, such as traffic updates.

5. Flexibility
Some e-paper displays are used because of
their high flexibility (Ynvisible’s displays are
flexible enough to curve around a pencil!)
and lightweight nature (Figure 2). This is
a really important factor when shipping is
involved, for example.

Ynvisible’s e-paper displays [2] are also fully
customizable and can be developed to meet

Electrochromic Display (e.g., Ynvisible)
Electrochromic displays are produced using
electrochromism, a process where material
changes color when applying an electric
current. The electrochromic material
undergoes chemical oxidation and reduc-
tion on applying voltage in the presence of
an electrolyte. This results in a color change,
which can be finely tuned. Ynvisible’s
electrochromic displays are ultra-energy-ef-
ficient, and one coin cell battery can power
them for around 50 years.

Ynvisible’s displays are produced using
screen-printing processes that are highly
scalable and cost-effective (see Figure 1),
making them a more cost-effective solution
to other e-paper technologies.

Key Features of E-Paper
The five key features of e-paper technol-
ogy are:

1. Bistability
E-paper displays have various levels of bista-
bility, which means that the display retains
an image without requiring a power source.
Ynvisible displays can retain an image for
15 minutes before a small refresh pulse is
required. We call this semi-bistability.

2. Low Power Consumption
Since e-paper displays do not need any
backlight nor power to retain an image,
these displays have extremely low power
consumption, making them ideal for
off-grid applications, for example.

3. Reflectiveness
E-paper displays reflect light; they do
not emit any light, making them incred-
ibly energy-friendly. This also makes
these displays ideal for reading in direct

Figure 4: Electronic paper is perfect for digital
signage and public information displays.

Figure 6: E-paper can also be used to
counter the piracy of products.

Figure 7: Electronic paper displays provide a
cheaper alternative to traditional paper label
methods.

Figure 5: E-paper displays are widely
used in supply chain management to
track and monitor goods in real-time.

WEB LINKS

[1] What Is Electrochromic Display Technology?: www.ynvisible.com/news-inspiration/what-is-an-electrochromic-display
[2] Cost-Effective Custom Display Prototypes: www.ynvisible.com/news-inspiration/cost-effective-custom-display-prototypes
[3] Anti-Counterfeit & Authenticity Solutions Using Printed Electronics:
www.ynvisible.com/news-inspiration/authentication-solutions-printed-electronics
[4] New Cost-Effective Display Applications: www.ynvisible.com/solutions
[5] E-Paper Display Kit: www.ynvisible.com/product/e-paper-display-kit
[6] How to Drive Ynvisible’s E-Paper Display: www.ynvisible.com/news-inspiration/how-to-drive-ynvisible-e-paper-display

Partner Content

22 embedded world Special 2022 www.elektormagazine.com

Since the successes of Arduino and Raspberry Pi, it has become
obvious that there is money to be made with educational
computers of all kinds. In 2016, the BBC entered the race with
the micro:bit, a single-board computer featuring a Bluetooth
SoC from Nordic Semiconductor instead of a fully-fledged Linux-
capable processor.

Since then, incredible stories have emerged of businesses who
have built entire companies around the exclusive distribution of
the micro:bit ecosystem [1].

The old saying that you “don’t eat at a well-filled pot all by yourself
for too long” also applies to the field of embedded computing. The
continued progress in the field of Bluetooth SoCs has led to the

CLUE from Adafruit
A Smart Solution for IoT Projects

By Tam Hanna (Slovakia)

The BBC micro:bit was a great success, far beyond the educational
market it was intended for. Now, Adafruit’s CLUE has entered the
fray with a fully-fledged display and far more memory. Complete
with Bluetooth LE and a multitude of integrated sensors, it is
especially suitable for smaller IoT projects.

background

Figure 1: The attacker from the front ... Figure 2: ... and from behind.

lektor embedded world Special 2022 23

featuring 256 kB RAM — an attack vector has opened. Figures 1
and 2 show the result — the Adafruit CLUE that looks very similar
to the BBC micro:bit. Besides the SoC, which is not immedi-
ately visible in these photos, it is the much larger screen on
the front that really stands out. Instead of LEDs, we’re given a
240 × 240-pixel color display based on classic IPS LCD rather
than organic technology.

Another nice touch of the module is the connector located on the
back, as shown in Figure 3. It exposes an I2C bus using Adafruit’s
in-house format over which further sensors can be easily connected.
There is also an adapter for the Grove format used by Seeed, from
whom various reasonably-priced sensors are available.

It should be noted that the CLUE only looks to be partially compat-
ible with its forebear. While the connector along the bottom edge
is physically identical, using a different display means that, at first
glance, it looked as though many of the available housings for the
BBC micro:bit would not fit the Adafruit CLUE.

The author tested this hypothesis with a ThingiVerse case from
domw available at [2]. The front obviously did not fit as the CLUE’s
display was much larger than the LED matrix of the BBC’s origi-
nal. Bearing this in mind, the author found it particularly surpris-
ing that the rear panel of the case fitted correctly, despite the
additional connectors. However, on closer inspection, this was
likely because the case design was comparatively generous. Had
the case been designed with a tighter fit, it is unlikely to have
been any use at all.

A Question of Programming
Being an educational system, developing with a micro:bit is

micro:bit’s 16 MHz and 16 kB SRAM looking a little long in the
tooth. Moreover, its 5 × 5 LED display is not suited to outputting
anything more than the simplest of graphics.

Adafruit Attack
With the Nordic Semiconductor nRF52840 launch, a single-
core Bluetooth SoC whose ARM processor reaches 64 MHz and

Figure 3: The STEMMA port allows the Adafruit CLUE to connect
to extension boards.

FEATURES
 > Nordic nRF52840 Bluetooth LE processor: 1 MB of flash,
256 kB RAM, 64 MHz Cortex M4 processor

 > 1.3˝ 240 × 240 color IPS TFT display for text and graphics

 > Power from any 3.6 V battery source (internal regulator and
protection diodes)

 > Two user buttons and one reset button

 > Motion sensor, accelerometer/gyrometer, and magnetometer

 > Proximity, light, color, and gesture sensor

 > PDM microphone sound sensor

 > SHT humidity sensor

 > BMP280 sensor for temperature and barometric pressure/
altitude

 > RGB NeoPixel indicator LED

 > 2 MB internal flash storage for data logging, images, fonts, or
CircuitPython code

 > Buzzer/speaker for playing tones and beeps

 > Two bright white LEDs in front for illumination/color sensing

 > Qwiic/STEMMA QT connector for adding more sensors,
motor controllers, or displays over I²C. GROVE I²C sensors
also supported by using an adapter cable.

 > Programmable with Arduino IDE or CircuitPython

24 embedded world Special 2022 www.elektormagazine.com

The connected workstation (the author runs Linux) then sees a
new USB drive where compiled code can be uploaded.

Interestingly, the Adafruit CLUE is always visible to the computer.
If it is not in bootloader mode, dmesg detects it as follows:

tamhan@TAMHAN18:~$ dmesg
. . .
[28292.202193] usb 1-2.7: Manufacturer: Adafruit LLC
[28292.202195] usb 1-2.7: SerialNumber: 7687A137B6FDB874
[28292.204040] cdc_acm 1-2.7:1.0: ttyACM0: USB ACM

device

After double-pressing the reset button, a USB drive appears instead,
as shown here:

tamhan@TAMHAN18:~$ dmesg
. . . .
[28371.624193] sd 10:0:0:0: Attached scsi generic sg6

type 0

It is important to note that this drive does not stay enabled forever.
If it remains unused for more than 30 seconds or so, the firmware
resets back to normal operation.

Search Files
By visiting the URL https://circuitpython.org/board/clue_nrf52840_
express/, we can take our first step and download the adafruit-cir-
cuitpython-clue_nrf52840_express-en_US-6.1.0.uf2 file. This contains
the runtime that must be placed on the USB drive.

It is interesting to note that you will also find a file called CURRENT.
UF2 on the drive. This allows you to download the firmware that
is currently in the memory of the target system.

Strangely, the runtime does not come with a full library that
supports all the available sensors. Instead, we have to go to the
URL https://circuitpython.org/libraries to download the archive
adafruit-circuitpython-bundle-6.x-mpy-20210329.zip and then extract
it to a convenient folder in the file system.

At this point, you should take another look at the CLUE’s screen as
the runtime permanently outputs the console’s contents. A nice
touch is that the device — as shown in Figure 5 — exposes the
internal memory of the Python working environment to the PC.

It is important to place the following folders from the archive in
the Libs folder on the device:

adafruit_apds9960
adafruit_bus_device
adafruit_display_shapes
adafruit_display_text
adafruit_lsm6ds
adafruit_register

unlike the experience to be had using classic embedded devel-
opment environments such as ARM Keil. This may be annoying
for embedded purists, but it is necessary in practice as many
universities do not have enough competent personnel for debug-
ging C++ (believe the author: students create incredibly obtuse
program errors).

Instead, it generally relies on a quadrumvirate of Arduino IDE,
CircuitPython, MakeCode, and Scratch. For CLUE, however, only
two of these environments are currently available. MakeCode
is being worked on without a known delivery date, and there
is no information on Scratch. What is included is a serial
bootloader to enable the deployment of code, much like the
Raspberry Pi Pico.

For a first, small experiment, let’s get CircuitPython running. If you
connect a new board to the computer via the Micro-USB connec-
tor on the back, the display shows a status page (Figure 4) that
provides information on the operating state.

Pressing the reset button on the back of the board twice initially
causes the frame buffer in the screen’s display controller to freeze.

Figure 5: The Python runtime also exposes a virtual drive.

Figure 4: This pre-installed app shows the information returned
by the sensors.

lektor embedded world Special 2022 25

In addition to the clue object, which provides various board-re-
lated functions, the import of the Circle class is also interesting
here. The GUI stack allows both direct drawing into a frame buffer

As if this were not enough work, Adafruit also expects you to collect
the following individual files. Why these are not all bundled up in
a single archive is unclear:

adafruit_bmp280.mpy
adafruit_clue.mpy
adafruit_lis3mdl.mpy
adafruit_sht31d.mpy
adafruit_slideshow.mpy
neopixel.mpy

Code Example
For a first simple attempt with the Python environment, you can
use the example provided at https://learn.adafruit.com/adafruit-
clue/clue-spirit-level. This implements a spirit-level application
using several CLUE-specific idioms.

The first step of the code is to include a group of libraries:
import board
import displayio
from adafruit_display_shapes.circle import Circle
from adafruit_clue import clue

Figure 6: A spirit-level using the on-board sensors.

TAILORED TO YOUR NEEDS.
Custom & Standard Terminal Blocks

Würth Elektronik Terminal Blocks
In addition to a portfolio of more than 2000 standard articles, Würth Elektronik
offers various possibilities to tailor the products to your specific requirements.
Personalized modifications of standard terminal blocks are available for small
to medium quantities within a few days as a special service. Fully customized
prod ucts in high quantities are possible within a few weeks. In house design,
tooling and prototyping ensures all customer specific requirements are met.

For further information, please visit: www.we-online.com/TBL

• Highly customized products
• Over 2000 standard articles
• Available from stock without MOQ
• Fast delivery

• Personalized modifications of
standard parts for small quantities

• Color & printing possibilities with
MOQ for mass production

Advertisement

26 embedded world Special 2022 www.elektormagazine.com

The most convenient way to quickly execute code on the CLUE is to
use the code.py file shown in Figure 5. The CircuitPython firmware
automatically executes this as part of each startup. Figure 6 shows
what you can expect.

Due to the presence of a Bluetooth radio, this can also be used to
communicate with the host computer. At [3], Adafruit provides an
entertaining example that illustrates the use of the web Bluetooth
API implemented in Google Chrome.

And Now Using C
Python may be a fast way to get unbureaucratic results from an embed-
ded system. However, maximum performance is achieved by using C.

Especially on a single-core radio system, implementing communi-
cation is challenging if the application is not to be beset by timing
problems. Because of this, Adafruit more or less forces developers
to use the Arduino IDE. A real-time operating system then works in
the background, allocating computing power to the various tasks.

Under Linux, the first step requires an extension package that allows
the Arduino IDE (version 1.8.6 or higher) to communicate with the
CLUE’s non-standard bootloader:

tamhan@TAMHAN18:~$ pip3 install --user adafruit-nrfutil
Collecting adafruit-nrfutil
 . . .
Successfully installed adafruit-nrfutil-0.5.3.post13

Next, we need to enter the URL https://www.adafruit.com/package_
adafruit_index.json in the Board Manager to make the Adafruit
nRF52 board package available for download. After these steps are
complete, the board is available under Tools > Board > Adafruit CLUE.

Unfortunately, as in the case of CircuitPython, setting up these
libraries and other settings is a laborious process. More informa-
tion on this can be found at [4].

Is It Worth It?
If you do decide on the CLUE, you’re getting a thoroughly attractive
evaluation platform that is pleasant to use in the area of interfacing
coupled with the benefits of a color screen. On the other hand, the
price is comparatively high compared to the BBC micro:bit, which
costs considerably less. It should also be noted that the CLUE is
not 100% compatible with the micro:bit. Experience tells us that

as well as working with objects that are converted by the firmware
into elements that appear on the screen.

In the next section, the firmware initializes a reference to the display
and assembles a display group object:

display = board.DISPLAY
clue_group = displayio.Group(max_size=4)

The clue_group object is interesting in that it generates a parent
element reminiscent of a DOM tree. Our code then more or less
writes arbitrary objects to this tree for display.

Looking at the image in Figure 6, it follows that the next step of
the program is to generate the three circles responsible for the
representation of the deflection and to register them for the output:

outer_circle = Circle(120, 120, 119, outline=clue.WHITE)
middle_circle = Circle(120, 120, 75, outline=clue.

YELLOW)
inner_circle = Circle(120, 120, 35, outline=clue.GREEN)
clue_group.append(outer_circle)
clue_group.append(middle_circle)
clue_group.append(inner_circle)

Next are some more housekeeping tasks, the sense of which is most
easily understood by examining the sample code below:

x, y, _ = clue.acceleration
bubble_group = displayio.Group(max_size=1)
level_bubble = Circle(int(x + 120), int(y + 120), 20,

fill=clue.RED, outline=clue.RED)
bubble_group.append(level_bubble)

clue_group.append(bubble_group)
display.show(clue_group)

Last but not least, we need a loop that analyzes the position values
output by the Adafruit library via the acceleration attribute and
writes them to the coordinate properties of the bubble_group object:

while True:
 x, y, _ = clue.acceleration
 bubble_group.x = int(x * -10)
 bubble_group.y = int(y * -10)

WEB LINKS

[1] StreamIT, s. r. o. : https://edutronik.sk/v2/
[2] Housing: https://www.thingiverse.com/thing:1767446
[3] Demo application: https://learn.adafruit.com/bluefruit-dashboard-web-bluetooth-chrome
[4] Info: https://learn.adafruit.com/adafruit-clue?view=all

lektor embedded world Special 2022 27

this not insignificant detail has the greatest impact precisely when
we are in difficulty, such as porting an existing, working project
between the two platforms.

For those who want to work with a clean, Nordic-based microcon-
troller or radio module, you’ll probably be better served by a classic
evaluation board. So the bottom line is that the CLUE is an endear-
ing product for those who want to benefit from a BBC micro:bit
but require a little more performance or use of a full display.

210395-01

Questions or Comments?
Do you have technical questions or comments about this article?
Contact the Elektor team at editor@elektor.com.

Contributors
Text and Photographs: Tam Hanna
Editor: Jens Nickel
Translation: Stuart Cording
Layout: Giel Dols

RELATED PRODUCTS

 > Adafruit CLUE
www.elektor.com/19512

Advertisement

28 embedded world Special 2022 www.elektormagazine.com

The RP2040 is certainly an interesting alternative to the more estab-
lished microcontrollers. Not only is the chip’s bang-per-buck ratio
impressive, it currently enjoys a good level of availability. Documentation
and support from the Raspberry Pi Foundation is another of its strong
points, making it a good choice for newbies to the environment. All
the latest information relating to this chip can be read and viewed in
articles [1][2][3], a webinar [4] or videos [5] from Elektor.

The Raspberry Pi Pico — the manufacturer’s own board on which the
RP2040 is installed — is equipped with minimal additional hardware
to keep the price down to around €5 per board. One year on after its
release, the RP2040 chip has found its way onto a number of third-party
boards which have been equipped with a wide variety of peripherals.
In this review we take a closer look at some of these other boards to
help you to decide which of them fits your needs.

The Raspberry Pi Pico
The Raspberry Pi Pico board (Figure 1) contains just about the

minimum hardware necessary to support the RP2040 operation.
On board is a user-controllable green LED and a DC/DC buck/boost
converter to allow the board to be powered from an external 1.8 to
5.5 V source or via the 5 V from the USB port. The Raspberry Pi Pico
is still one of the best boards in terms of price/performance ratio,
especially if you just want some experience with the RP2040 and its
development environment. Maybe you already have a collection of
modules and external components/sensors you can interface with
it. The board enjoys support from a number of books and there are
many web resources to draw on for self-study. Additional hardware
will be necessary if you plan to venture beyond the basics (see
the Elektor Raspberry Pi Pico Experimenting Kit below). Without
too much effort the Pico board can also function as a debugger
for another RP2040. At €5 per unit, it is very affordable, and if you
want a Pico with preinstalled pin headers together with a suitable
micro USB cable (Figure 2), look no further than the Elektor Store,
where you can also find some interesting expansion boards for the
Raspberry Pi Pico there.

Raspberry Pi RP2040 Boards
Aplenty
By Mathias Claußen (Elektor)

The RP2040 is the first microcontroller chip designed by the team
at Raspberry Pi. It was first fitted to the maker-friendly Raspberry
Pi Pico board, and since its introduction, it has also found its way
onto boards and kits from third-party providers. It’s time to check
out what they have to offer!

tips & tricks

Figure 1: The Raspberry Pi Pico (Source: Raspberry Pi). Figure 2: Raspberry Pi Pico with Headers (Source: Elektor).

lektor embedded world Special 2022 29

Cytron Maker Pi Pico
(with soldered Raspberry Pi Pico)
If you want to start experimenting with the Raspberry Pi Pico and the
RP2040, this platform (Figure 6) is a good place to start. The version
which uses a soldered-in RPi Pico board retails for around €18.

Adafruit Feather RP2040
The Adafruit Feather RP2040 (Figure 3) is an RP2040 board in the
Feather board form factor. The difference to the Raspberry Pi Pico is
mainly the number of peripherals and the amount of Flash memory
integrated on board. The Raspberry Pi Pico has just 2 MB, while the
Feather Board has 8 MB SPI Flash, giving significantly more space
for your own software. An RGB LED is fitted to the board, as well as
a USB-C socket and a STEMMA QT connector for plugging in any
Qwiic, STEMMA QT or Grove I2C device. The JST PH battery connector
allows the board to be powered by a single cell LiPoly battery which
can be charged directly via the on board USB port.

SparkFun Thing Plus – RP2040
The SparkFun Thing Plus - RP2040 (Figure 4) is very similar to the
Adafruit Feather RP2040, even down to the pin out assignments. This
board is fitted with 16 MB QSPI Flash (underneath the board) which is
the maximum addressable by the RP2040. It is also fitted with an RGB
LED and three status LEDs. As with the Adafruit Feather RP2040, it
includes a charging circuit for a single cell lithium battery and a Qwicc
connector. A micro SD card slot is also fitted underneath the board
and SD cards can be addressed as mass storage using the RP2040’s
PIO state-machine facility. A webinar [4] reveals how the flexibility of
the PIO state machines led to an unusual sequence of GPIO assign-
ments to Sparkfun’s SD card reader interface. Anyone with peripher-
als which use the Qwiic connector or add-ons with a feather board
pinout should take a closer look at this board!

Arduino Nano RP2040 Connect
The Arduino Nano RP2040 Connect (Figure 5) brings Wi-Fi and
Bluetooth communication capability to the RP2040 MCU. At €27, it
is certainly not the cheapest board, but it is well equipped with just
about every on board peripheral you could wish for. It is fitted with
264 KB of SRAM and 16 MB flash and has a ublox NINA-W102 Wi-Fi
and BLE v4.2 module, a 6-axis IMU (STM LSM6DSOXTR), a micro-
phone (MP34DT05) and an ATECC608A crypto Chip from Microchip.
It is of course well supported by the Arduino IDE and despite all the
additional peripherals, at 43.18 x 17.78 mm it is substantially smaller
that the Raspberry Pi Pico board.

There is more than enough hardware on board to take the first steps
with an RP2040 and to support even more ambitious projects. The
possibility of exchanging data via Bluetooth and Wi-Fi, as well as
the integrated microphone, also suggest an introduction to the first
AI application. I am not sure I would recommend the Arduino Nano
RP2040 Connect for a complete beginner to this environment. If your
plan is to start working with Wi-Fi and IoT applications, you might
be better advised to look at an ESP32 board or the new ESP32-C3.
The datasheet for NINA-W102 module fitted to the Arduino Nano
RP2040 Connect indicates that there is in fact an ESP32 tucked
away inside to take care of Wi-Fi and Bluetooth communications.
Those with some experience working with Wi-Fi and Bluetooth and
are keen to try out an RP2040 with a cloud connection might want
to check out what this board has to offer. My colleague Clemens
Valens has already posted a short video about it, which you can find
on the Elektor Youtube channel [6].

Figure 3: The Adafruit Feather RP2040 (Source: Adafruit).

Figure 5: Arduino Nano RP2040 Connect (Source: Arduino.cc).

Figure 4: SparkFun Thing Plus RP2040 (Source SparkFun).

30 embedded world Special 2022 www.elektormagazine.com

which you can make a start on increasingly ambitious pico projects
step by step. The ESP-01 socket header also gives the opportunity to
quickly configure a Wi-Fi project. The Raspberry Pi Pico’s 3-pin debug
interface is also available at header pins on the board.

Cytron Maker Pi RP2040
Motor control and robotics? With the Raspberry Pi PR2040? Sometimes
it would be useful to be able to control small motors or a stepper motor
with the Raspberry Pi Pico. This is exactly the aim of the Cytron Maker Pi
RP2040 (Figure 7). The board contains an integrated (MX1508/TC1508)
motor driver chip with two H-bridges to drive two low voltage DC motors
or one stepper motor. If you are unsure how you can use an H-bridge or
how motor control is accomplished, take a look at my basic article [7].

Small motors rated up to 6 V and 1 A per channel can be operated
directly from this board. The board also offers the option of connecting
up to four servos directly. Power for the board comes from the USB
port, a LiPo battery or an external 3.6 – 6 V supply. A LiPo charging
circuit is included for battery management and power from all of these
sources can be turned off with an on-board switch.

The RP2040 chip is mounted on the Cytron Maker Pi RP2040 board
and offers exactly the same Flash memory capacity (2 MB) as the
RPi Pico board. The board also includes 13 GPIO status LEDs, two
WS2812 LEDs, a buzzer, two buttons and seven Grove ports for
easy expansion.

Elektor Raspberry Pi Pico Experimenting Kit
At € 45 the Elektor Raspberry Pi Pico Experimenting Kit (Figure 8) is
the most expensive board in the line-up here. The basis for this kit is
the Raspberry Pi Pico which plugs directly into this board so that it can
easily swapped out if necessary. The main board of the kit itself provides
buttons, LEDs, buzzers, a TFT display and Grove connectors. With the
accessories of WS2812 LEDs, DHT11 air temperature and humidity sensor,
relay, potentiometer, ultrasonic distance sensor, servo, MPU6050 gyro

The main difference between this board and the others mentioned
so far is its format. The Cytron Maker Pi Pico Base is an experimen-
tal platform onto which a Raspberry Pi Pico is fitted. All pins of the
Raspberry Pi Pico are brought out onto two rows of pin headers, so
that they can easily be probed with a measuring device. The board
also offers a number of Grove connections to hook up compatible
peripherals. Each GPIO pin on the board has an LED associated with
it, so you can quickly see their state. A micro SD slot and a socket for
an ESP-01 Wi-Fi board are also fitted along with a number of push
buttons and a buzzer.

This platform is ideal if you already have a stack of Grove-compatible
hardware; you can just plug them in and start working with the RPi
Pico board. The pin headers also allow other modules to be connected
quickly and safely. The mounted peripherals include a buzzer (with a
disable switch), WS2812 RGB-LED, buttons and an SD card slot, with

Figure 6: Cytron Maker Pi Pico (Source: cytron.io). Figure 7: Cytron Maker Pi RP2040 (Source: cytron.io).

Figure 8: Elektor Raspberry Pi Pico Experimenting Kit (Source: Makerfabs).

lektor embedded world Special 2022 31

and acceleration sensor as well as an ESP8266, you get a kit that is
equally suited to beginners and advanced users who like to experiment.
Since the components are easily plugged into the board as modules (via
the Grove connectors), it provides real flexibility in how the Raspberry
Pi Pico board is used. Thanks to the 1.44 inch display (with an ST7735
controller), your first graphics applications can also be developed using
Python or C/C++. If you don’t have any modules or other components
already, this kit represents good value for money and altogether is a very
well-rounded introduction to the world of the RP2040.

Which Board Is Best?
This is a question everyone has to answer for themselves and depends
heavily on what they plan to do. Every board or kit has its advantages
and disadvantages, and depending on your budget, you have to weigh
up what the most essential features are for your needs. Do you need
a board with all the peripherals already installed, or would you be
better off starting with a basic kit and then adding specific modules as
needed? Will your application require a battery management/charging
function? Will the board be for your own use, or maybe you are think-
ing it would make a good gift to inspire a member of the upcoming
generation of Engineers or Makers?

It’s clear we can make no general recommendation for any particular
board. What is clear is that the Raspberry Pi RP2040 microcontroller
offers lots of potential for both beginners and experienced develop-
ers - and, above all, is currently in stock

210629-01

Questions or Comments?
If you have any technical questions or comments about this
article contact the author at mathias.claussen@elektor.com or
contact Elektor at editor@elektor.com.

Contributors
Development and Text: Mathias Claußen
Editor: Jens Nickel
Layout: Giel Dols

WEB LINKS

[1] “Pico Power: Get to Know the Raspberry Pi Pico Board and RP2040,” Elektormagazine.com:
www.elektormagazine.com/articles/pico-power-raspberry-pi-pico-rp2040
[2] “Raspberry Silicon: Introducing the Raspberry Pi RP2040 MCU and the Pico Board,” Elektormagazine.com:
www.elektormagazine.com/news/introducing-raspberry-pi-rp2040-microcontroller-pico-board
[3] Raspberry Pi Pico MCU with Preinstalled Pin Headers:
www.elektormagazine.com/news/raspberry-pi-pico-mcu-pre-installed-pin-headers
[4] Eben Upton and Nathan Seidle discuss the Raspberry Pi Pico and RP2040:
www.elektormagazine.com/news/eben-upton-nathan-seidle-sparkfun-raspberry-pi-pico-rp2040
[5] Elektor TV on YouTube: www.youtube.com/user/ElektorIM
[6] Clemens Valens, “Board Review: Arduino Nano RP2040 Connect,” ElektorTV: www.youtube.com/watch?v=2EnCf64zZSA
[7] Mathias Claußen, “Driving Motors with H-Bridges,” Elektor January/February 2022: www.elektormagazine.com/210491-01

RELATED PRODUCTS

 > Elektor Raspberry Pi Pico Experimenting Kit
(SKU 19834)
www.elektor.com/19834

 > Cytron Maker Pi RP2040 - Robotics with Raspberry Pi
RP2040 (SKU 19926)
www.elektor.com/19926

 > Cytron Maker Pi Pico (SKU 19706)
www.elektor.com/19706

 > Arduino Nano RP2040 Connect with Headers
(SKU 19754)
www.elektor.com/19754

 > SparkFun Thing Plus – RP2040 (SKU 19628)
www.elektor.com/19628

 > Adafruit Feather RP2040 (SKU 19689)
www.elektor.com/19689

 > Raspberry Pi Pico RP2040 (SKU 19562)
www.elektor.com/19562

 > Raspberry Pi Pico RP2040 (with pre-soldered Headers)
(SKU 19568)
www.elektor.com/19568

32 embedded world Special 2022 www.elektormagazine.com

Embedded software development without C is almost impossible to
imagine. As assembler became too cumbersome to develop entire
applications, C displaced it except in specific cases when highly-op-
timized, hand-coded assembler was the only option. The language,
developed by Dennis Ritchie [1] at Bell Labs, provides enough flexibil-
ity to develop complex applications while also providing easy access
to registers. This is critical to writing compact microcontroller code
that handles register accesses in interrupt routines. It is also easy to
implement tasks such as bit manipulation of registers. And, unlike
code written in assembler, the resultant code is easier to read. C also
ranks consistently as a preferred programming language, ranking in
the top three programming languages in surveys and market analy-
ses (Figure 1) [2][3].

C Is Old
However, C, developed in 1972, is now 50 years old. It has a range
of limitations that are well known, many of which relate to the use
of pointers. While pointers make it easy for embedded developers
to access registers, they can also result in unwanted out-of-bounds
memory accesses. Additionally, compared to more modern program-
ming languages, C compilers undertake comparatively few code checks.
As a result, unused variables are simply ignored, something which
could signify a coding mistake.

To ensure unsafe C code is not integrated into embedded systems,
developers use coding standards such a MISRA C [4]. This standard
came about as C grew in importance in the automotive industry as a
programming language for embedded systems. C++ resolves some

By Stuart Cording (Elektor)

While the products embedded systems engineers
release to the market make it seem like technology
is moving forward rapidly, the industry itself
is, by comparison, slow. That’s why it was such
a shock when Raspberry Pi, the renowned
single-board computing creator, brought out
the RP2040 microcontroller (MCU) with its dual
Cortex-M0+ cores and no onboard flash. Dual-
core in this class of devices is unheard of. But
that is about as exciting as it has got. Progress
in the world of embedded systems is otherwise
measured, meaningful, and considered. But
several developments are underway that could
change embedded development in the decade
ahead, as we shall see.

What’s New
in Embedded

Development?
Rust and Keeping IoT Deployments Updated

ELEKTOR INDUSTRY

Embedded
DevelopmentDevelopment

lektor embedded world Special 2022 33

checking employed by the compiler can cause issues when implement-
ing some types of code. Some code sections can be marked unsafe
to allow, for example, pointer dereferencing to circumvent this. The
thinking here is that, by explicitly defining code sections as unsafe,
the code clarifies circumvention of the rules of Rust.

Taking Rust for a Spin
One of the best starting points to get a feel for Rust is with the Raspberry
Pi. Installation is simple, following the guidelines at the website rustup.
rs [8]. From the command line, simply enter the following command
and follow the instructions provided:

curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.
rs | sh

Unlike C/C++ that generates binaries, the output of RUST is known as
a crate. The package manager Cargo is used to simplify the command
line compilation process. This stores the data needed to generate the
crate and allows the developer to define the packages required to build
it. By invoking Cargo from the command line, a new Rust project is
generated as follows:

cargo new rust_test_project

Opening the new project’s directory shows a file named Cargo.toml.
This file must be modified as required. For a simple Raspberry Pi appli-
cation that blinks an LED connected to a GPIO, a suitable crate depen-
dency has to be defined to access the GPIO pins. Crates are shared on
crates.io [9], a platform dedicated to the Rust community’s crates. A

of C’s issues with pointers with references [5] that cannot be changed
to refer to another object, cannot be NULL, and must be initialized
on creation. Despite this, AUTOSAR, a development partnership of
automotive systems developers, developed guidelines for the usage of
C++ for safety-related applications in a document with several hundred
pages [6]. So, while competency in these established languages is
essential for embedded developers, it is clear that each language has
enough shortcomings that guidelines are needed to avoid common
programming failures.

Introducing Rust
Rust has emerged as a potential contender, touting itself as highly suited
for developing safe systems. It started as a private project by Graydon
Hoare in 2006, becoming a sponsored project of his employer, Mozilla
Research, around 2010. In 2021, the Rust Foundation [7] was formed
after company restructuring impacted the Rust development team.

What makes Rust different is that, at compile time, many issues are
caught and highlighted, often for issues that C/C++ compilers would
ignore. An ownership system for variable declarations is also imple-
mented. This uses a borrow-checker to avoid the misuse of variables
with enforcement during compilation. Additionally, read and write
access to variables passed by reference must be explicitly declared.
Much of Rust looks syntactically similar to C and C++, using curly
brackets around functions and the well-known control keywords.

Due to its focus on safe code, work has been undertaken to deliver
Rust to the bare metal embedded software development community.
However, due to the nature of embedded programming, the static

Figure 1: C remains popular as a programming language, regularly placing in the top three in surveys and market analyses. (Source: www.tiobe.com)

34 embedded world Special 2022 www.elektormagazine.com

suitable crate is rppal, which can be found via the search feature. The
platform shows whether the crate can be built currently, provides the
version number, and offers documentation and example code. The
crate name and version number are then added as dependencies
in Cargo.toml (Listing 1).

Moving to the src directory, the developer finds a simple Hello World
example project in the Rust source code file main.rs. Replacing
this code with Listing 2 allows an LED connected to GPIO 23 (pin
16 of the Raspberry Pi header) to be flashed ten times. Compilation
is undertaken from the command line using cargo build, and the
crate is executed using cargo run.

Something holding back the use of Rust on some microcontrollers
is the need to use an LLVM toolchain. If this is available, you can
get started using one of the various online tutorials. One example is
provided for the BBC micro:bit [10] and shows that, once the Rust
syntax has been understood (Listing 3 [11]), it’s very similar to writing
code in C/C++. Another example for the STM32 [12] is also provided.

Is Rust the Future?
So, what is holding back the adoption of Rust for embedded? Well,
if you’re looking for a robust programming language suited for use
in safety-critical systems, Ada [13] already has you covered. And,

firm
w

are

softw
are

Traditional stack Toit

ESP-IDF ESP-IDF

Virtual machine

A
ll system

functionality

Stock ticker app

W
eather app

S
ystem

 app

Figure 2: Toit executes IoT code as apps on top of a virtual
machine running on an ESP32. (Source: Toit)

Figure 3: The Toit Console in a browser, here displaying two simulated ESP32
nodes.

Listing 2: Blinking an LED in Rust.

Blinking an LED in Rust is similar to code written in C. This example is based upon code included with the rppal crate.

use std::error::Error;
use std::thread;
use std::time::Duration;
use rppal::gpio::Gpio;
use rppal::system::DeviceInfo;
// Gpio uses BCM pin numbering. BCM GPIO 23 is tied to physical pin 16.
const GPIO_LED: u8 = 23;
fn main() -> Result<(), Box<dyn Error>> {
 let mut n = 1;
 println!("Blinking an LED on a {}.", DeviceInfo::new()?.model());
 let mut pin = Gpio::new()?.get(GPIO_LED)?.into_output();
 while n < 11 {
 // Blink the LED by setting the pin’s logic level high for 500 ms.
 pin.set_high();
 thread::sleep(Duration::from_millis(500));
 pin.set_low();
 thread::sleep(Duration::from_millis(500));
 n += 1;
 }
 Ok(())
 }

Listing 1: Adding the rppal dependency to Cargo.toml in
a Rust project.

[package]
name = "rust_test_project"
version = "0.1.0"
edition = "2021"
 [dependencies]
rppal = "0.13.1"

lektor embedded world Special 2022 35

platform already has its ESP-IDF (Espressif IoT Development Frame-
work), so it’s ready for use as an IoT node. Toit has then built a virtual
machine (Figure 2) that allows apps to execute safely on top. Apps
are written in Toit, a high-level, object-oriented, and safe language.

Testing Toit with Simulated ESP32 Nodes
Managing and deploying apps across a collection of IoT nodes is
handled using the Toit Console coupled with Microsoft’s Visual
Studio Code. For those only interested in trialing the platform, the Toit
Console allows simulated ESP32 devices to be used. After installing
the Toit extension for Visual Studio Code, apps can be written and
simulated locally or deployed to devices attached to the Console.

A YAML file accompanies Toit apps. This markup language file is
used to declare the Toit app name, source code file, and define
triggers. These can execute the app after booting, installation, and
set time intervals.

Deployment of apps or updates does not require the target ESP32
device to be disabled, or power cycled. Instead, the virtual machine

despite being 40 years old, it also hasn’t yet managed to
displace C, despite being developed specifically for use in
real-time embedded systems. Another aspect is C’s years
of success, with countless developers, tools, and libraries
of code available.

However, the availability of the Crate package manager
could help speed up its adoption. Keeping track of semicon-
ductor vendor peripheral libraries written in C/C++ can
be challenging and opaque, so the explicit definition of
the version of the crates used in Cargo.toml could be
seen as a significant improvement. It may also simplify
the lives of MCU manufacturers trying to support their
massive portfolios of products. However, Ada has already
responded with the release in 2020 of their Alire package
manager [14]. And, just like for Rust, Ada already includes
support for the BBC micro:bit, should you wish to compare
the two languages with an MCU [15].

Keeping IoT Devices Up-to-Date
With ever more embedded devices connected to networks,
the biggest challenge is keeping them updated with the
most recent version of the firmware. Traditionally, firmware
updates have to be downloaded over the air with the binary
programmed into flash using an on-chip bootloader stored
in a protected area of the device. However, the risk is that
this new code version fails to deploy correctly, bricking the
product and making it unusable. Alternatively, the code may
function, but a software bug in the new code could hinder
future updates from deploying, leaving vulnerable devices
in the field. Thus, despite the majority of the application
functioning correctly, the device becomes unusable,
perhaps due to a mistake in a single line of code.

For years, virtual machines have been a standard method
for deploying multiple apps or operating systems on servers.
The virtual machine allows an operating system to be
executed, believing it is on dedicated hardware. Should
the operating system fail catastrophically, only the affected virtual
machine is impacted, not the remaining systems running on the
server. Desktop users will be aware of virtualization software such as
VirtualBox, VMware, and Parallels, allowing them to trial software or
alternate operating systems without placing their primary machine
at any risk.

Updating IoT Node Firmware:
Getting Around Toit
The team at Toit, a Danish company, formed by ex-Google engineers,
wondered why virtualization wasn’t in use on microcontrollers running
IoT applications. After all, they require regular updates to ensure bugs
are fixed and may even need changes to support improvements
made to the cloud services they communicate with. And, obviously,
no one wants to manually flash IoT nodes in the field if the devices
get bricked by an update.

To get started, they opted for the ESP32 from Espressif. The recom-
mended hardware is the ESP32-WROOM-32E with a dual-core 32-bit
Xtensa LX6 microprocessor, 520 KB SRAM, and 4 MB of flash. The

Listing 3: Simplified code snippet that checks the state of an
input pin on the BBC micro:bit using Rust.

#![no_std]
#![no_main]

extern crate panic_abort;
extern crate cortex_m_rt as rt;
extern crate microbit;

use rt::entry;
use microbit::hal::prelude::*;

#[entry]
fn main() -> ! {
 if let Some(p) = microbit::Peripherals::take() {
 // Split GPIO
 let mut gpio = p.GPIO.split();

 // Configure button GPIO as input
 let button_a = gpio.pin17.into_floating_input();

 // loop variablew
 let mut state_a_low = false;

 loop {
 // Get button state
 let button_a_low = button_a.is_low();

 if button_a_low && !state_a_low {
 // Output message
 }

 if !button_a_low && state_a_low {
 // Output message
 }

 // Store button states
 state_a_low = button_a_low;
 }
 }
 panic!("End");
 }

36 embedded world Special 2022 www.elektormagazine.com

also supports the low-power mode of the ESP32, which they claim
allows the device to run on two AA batteries for years [18]. If an app
update occurs while the IoT node is in deep-sleep mode, the Console
deploys it when the node next wakes up.

Rust and Toit — The Future of Embedded?
Two things stand out with both Rust and Toit. Both are simple to
get up and running, and both use package managers to handle the
low-level drivers. This allows developers to focus on their job — build-
ing applications. With applications becoming increasingly complex,
such code reuse is essential to reduce development time and bring
products to market faster.

Rust has a huge mountain to climb. With C and C++ so entrenched
in the world of embedded development, it is difficult to find a chink in
the armor where it would deliver a benefit significant enough to draw
developers in. And, with Ada already established as the language
for safety-critical systems, Rust’s advantages essentially disappear.

Toit, by contrast, solves a major headache: keeping remote IoT nodes
up-to-date, deploying new features to the user base, and all without

Listing 4: A simple app written in Toit that outputs formatted time and date strings to the log in Console.

main:
 time := Time.now.local
 print "Time: $(%02d time.h):$(%02d time.m):$(%02d time.s)"
 print "Date: $(%04d time.year)-$(%02d time.month)-$(%02d time.day)"

Listing 5: The accompanying YAML file that tells the Toit Console how to deploy the app.

name: Hello World
entrypoint: hello_world.toit
triggers:
 on_boot: true
 on_install: true
 on_interval: "3s"

updates the app in-situ and triggers it as per the settings provided
in the YAML file. If the app fails somehow, such as through a stack
overflow, the remaining apps continue executing without issue [16].
Such errors can be diagnosed through the Console by reviewing the log.

A simple Hello World app that outputs the time and date is shown
in Listing 4, accompanied by its YAML file in Listing 5. Figure 3
shows two simulated nodes in the Console, while Figure 4 shows
the Hello World app successfully installed. Finally, Figure 5 shows
the date and time output at three-second intervals as defined using
the on_interval: “3s” trigger in the YAML file. The project code is
created in Visual Studio Code and, using the Toit extension, deployed
to the chosen node attached to the user’s Console account (Figure 6).

At first glance, the Toit approach may seem a little restrictive. The
virtualization environment only allows control of the GPIOs, serial
interface (UART), SPI, or I2C. However, with many IoT nodes collecting
sensor data and reporting these to the cloud, this seems to provide
enough flexibility for most applications. Toit also operates its own
package manager (registry) [17], providing drivers for a range of
sensors, input devices, LCDs, and other utilities. The environment

Figure 4: The Hello World app successfully installed on one simulated node. Figure 5: The LOGS output shows the time and date being output from the
Toit app every three seconds, as defined in the YAML file.

36 March & April www.elektormagazine.com

lektor embedded world Special 2022 37

WEB LINKS

[1] Dennis Ritchie, Computer History Museum: https://bit.ly/3oOXG1A
[2] P. Jansen, “TIOBE Index for December 2021,” TIOBE Software BV, December 2021: https://bit.ly/3EXx8Ri
[3] S. Cass, “Top Programming Languages 2021,” IEEE Spectrum, 2021: https://bit.ly/3oPJq8z
[4] MISRA Website: https://bit.ly/3s1Mv7D
[5] “C++ References,” Tutorials Point: https://bit.ly/31Y6k53
[6] “Guidelines for the use of the C++14 language in critical and safety-related systems,” AUTOSAR, October 2018:

https://bit.ly/3dO3zWl
[7] Rust Foundation Website: https://bit.ly/3DNgO45
[8] rustup Website: https://bit.ly/3EUTiDR
[9] Rust Crate Registry Website: https://bit.ly/3dLKmor
[10] droogmic, “MicroRust,” April 2020: https://bit.ly/3EUWFdM
[11] droogmic, “MicroRust: Buttons,” April 2020: https://bit.ly/3DWes30
[12] bors and NitinSaxenait, “Discovery,” December 2021: http://bit.ly/3GERDT7
[13] Get Ada Now Website: https://bit.ly/3GHyikw
[14] F. Chouteau, “First beta release of Alire, the package manager for Ada/SPARK,” AdaCore, October 2020:

https://bit.ly/3EUXOSC
[15] F. Chouteau, “Microbit_examples,” December 2021: https://bit.ly/3mnH7bx
[16] “Watch us turn an ESP32 into a full computer!,” Toit, March 2021: https://bit.ly/3IM0WT8
[17] Toit Package Registry Website: https://bit.ly/3yokpo7
[18] Toit Docs: Prerequisites, Website: https://bit.ly/3oNSECq

Figure 6: Using the Toit extension in Visual Studio Code,
changes to apps can be deployed immediately to IoT nodes
without fear of bricking devices in the field.

bricking devices out in the field. Some developers will be concerned
by the 4 MB minimum flash requirement and that, currently, only
ESP32 is supported. However, should the market demand appear
for other MCUs, there doesn’t seem to be a technical reason why
other platforms wouldn’t be supported in the future.

210652-01

Questions or Comments?
Do you have technical questions or comments about this article?
If so, please contact the author at stuart.cording@elektor.com or
the Elektor editorial staff at editor@elektor.com.

Contributors
Text/Images: Stuart Cording
Editors: Jens Nickel, CJ Abate
Layout: Harmen Heida

RELATED PRODUCTS

 > D. Ibrahim, BBC micro:bit (Elektor, 2016, SKU 17972)
www.elektor.com/17872

 > Joy-IT BBC micro:bit Go Set (SKU 18930)
www.elektor.com/18930

lektor March & April 2022 37

By Robert van der Zwan

Elektor infographic

38 embedded world Special 2022 www.elektormagazine.com

Are there restraints holding back
some of the embedded market’s
potential? Absolutely. One of them is
the lack of skilled software engineers.
Whereas back in 2010 about 4.5% of
the embedded software engineers
were unemployed (US figures), now
that is below 2%. The demand for
software engineers will be 21% higher
in 2028 than in 2021/2022, according
to recruitment company Built In. The
average growth for all occupations
will be around 5% for the same period.
Embedded software engineers can pick
and choose what they want, leading to
job hopping for 60% of them.

(Sources: Built In, Career research site
Zippia)

Embedded Software Engineer?
You Are in the Driving Seat

According to market research company
The Brainy Insights, the global market
for embedded systems still looks
very promising, as if Covid-19 has
never been around. Its research leads
to a compound annual growth rate
(CAGR) of 5.73% for the years 2021 to
2028. Although this estimate is rather
cautious compared to some other
market research firms, the report of
the Indian research company has a
very optimistic undertone indeed.
Automotive (market share 5%),
Healthcare (10%) and Communications
(45%) are promising sectors within the
embedded club and already make up
60% of its revenue.

(Sources: The Brainy Insights, The Insight
Partners)

Embedded: Its Growth Is
Solidly Embedded Indeed

2021

93.41 (est.)

138.45

2022 2023 2024 2025 2026 2027 2028

Global Embedded System Market Size, 2021-2028 ($ Billion)

Less than
one year

1-2 years

3-4 years

5-7 years

8-10 years

11+ years

0% 20% 40% 60% 80% 100%

Embedded Software Engineer:
Number of Years in a Job (Source: Zippia)

lektor embedded world Special 2022 39

Why can embedded software engineers
hop from one job to the other without
feeling uncomfortable? That is because
the job of designing a typical embedded
system roughly takes six months. Have
a look at the table set up by embedded

system developer AppliedLogix. This
American company has its clients in a
wide range of sectors and is qualified
to give some averages. These averages
make perfectly clear that an embedded
software engineer can complete a job,

feel good about it and turn to the next
assignment inside or outside the same
company.

(Sources: AppliedLogix, Zippia)

8-Bit MCUs Falling
Somewhat Behind
Although 8-bit microcontrollers are here to
stay, even at the end of this decade, it is also
true that the 32-bit MCUs are making more
headway than originally expected. The fact
that 32-bit controllers are gaining ground most
likely has to do with the fast growth of real-
time embedded systems. Whereas embedded
systems as a whole will grow 5.7% annually
between now and 2028, real-time embedded
systems will roughly grow 1 percentage point
more (6.9%). Also, the unit price of 32-bit
MCUs have been declining steadily. The easy
way of thinking (25% 8-bit, 25% 32-bit, 50%
16-bit) belongs to the past.

(Sources: Allied Market Research, The Brainy Insights,
Grand View Research)

Security: Is It Taken Care Of?
The last time we made an Infographics on security solutions for embedded
systems, two years ago, it became apparent that engineers were lacking
behind in implementing these solutions. Is this still the case? No, it is not.
The market for security solutions for embedded systems is growing faster
than the market for embedded systems itself. The difference in growth rate
is not spectacular — 5.73% against 6.84% during the coming years — but it
is enough not be alarmed any longer. Not only software protection is being
implemented, also hardware identification.

(Sources: The Brainy Insights, Knowledge Sourcing Intelligence)

Hopping from One Job to the Other

2020

3.787

5.633

1.000

2.000

3.000

4.000

5.000

6.000

CAGR = 6.84%

2021 2022 2023 2024 2025 2026

Global Embedded Security Market,
2020-2026 ($ Billion)
(Source: Knowledge Sourcing Intelligence)

Market Share Microcontrollers,
2021 vs. 2027

8-Bit 16-Bit 32-Bit

≈ 25% ≈ 25%
≈ 20%

≈ 50% ≈ 50%

≈ 30%

Scenario Cost Duration
PCB Layout Services with optional Signal Integrity analysis and optimization ~$5K to $35K ~1 to 8 weeks

Low to medium complexity microcontroller-based board schematic design and
PCB layout and firmware development

~$25K to $50K ~6 to 12 weeks

FPGA VHDL development ~$15K to $125K ~1 to 6+ months

Firmware/software development ~$10K to $125K ~2 weeks to 6+ months

Embedded
DevelopmentDevelopment

Partner Content40 embedded world Special 2022 www.elektormagazine.com

By Mark Patrick (Mouser Electronics)

5G is about more than improving mobile telephony. The
higher download speeds may enhance the browsing
experience on a smartphone, but the real impact of 5G
is more likely to come from applications that are yet to
emerge. Let’s look at how 5G may impact the industrial and
automotive sectors.

One of the key functions of any automated
factory is monitoring. 5G brings Massive
Machine-Type Communications (mMTC)
capability, which fulfils the needs of exten-
sive wireless sensor networks (WSN). 5G is
also more energy efficient that its prede-
cessors, which is critical for extending the
battery life of these connected devices,
thereby minimising maintenance.

For motion control and industrial robot-
ics, which require precision and real-time
sensitivity, Time-Sensitive Networking
(TSN) using wired Industrial Ethernet
has been the preferred network technol-
ogy. With its Ultra-Reliable Low-Latency
Communication (URLLC), 5G is a viable
wireless alternative and additionally
enables cloud robotics.

Three related technologies that are emerg-
ing into the factory environment are
Virtual Reality, Augmented Reality, and
Artificial Intelligence (VR/AR/AI). With
its high speed and URLLC, 5G enables

processing at the edge. Here, energy-in-
tensive computations can be performed
in the cloud, enabling less complex and
lower-cost devices on the field side.

5G Brings Challenges as Well as
Opportunities
To protect prior investments in previous
wired and wireless network technologies,
5G projects must integrate seamlessly into
the existing infrastructure. One of the key
challenges so far is that indoor cover-
age has never been a priority for Mobile
Network Operators (MNOs). Developments
in Open-RAN technologies reduce the cost
of ownership of 5G Radio Access Networks
(5G RAN), making Private 5G, also known
as Non-Public Network (NPN), deploy-
ments a realistic possibility. For businesses
that prefer this option, regulators world-
wide are making a dedicated, cost-effec-
tive spectrum available for private 5G. In
addition, depending on the operational
needs of the factory, private 5G can either
be wholly isolated from the public network
or shared.

5G and the Era of the
Connected Car
The automotive sector is also forecast to
be at the leading edge of the 5G roll-out,
though it may be a few years before level
5 (L5) autonomy is a commercial reality. It
is, however, likely that the next car you buy
will be Internet-enabled to manage telemat-

background

Why 5G in the Industrial
Manufacturing Sector?
Many of today’s smart factories are
constrained by the limitations of existing
wired architectures, which use proven
networks like Industrial Ethernet, Profinet,
and CANbus to connect the various
sensors, actuators, and controllers found
in automated equipment. This hard-wired
connectivity makes even small modifica-
tions to production facilities time-consum-
ing and costly.

Previous generations of wireless networks,
including the faster 4G/LTE, have been
unable to deliver the real-time responsive-
ness and low latency required for auton-
omy. Also, the factory floor is a difficult
operating environment, with high levels of
electrical noise and interference challeng-
ing the performance of many previous
wireless communications technologies.
5G’s enhanced networking capabilities can
address some of these issues, increasing
system efficiency and flexibility.

How the Industrial and
Automotive Sectors Will

Benefit from 5G

Partner Content lektor embedded world Special 2022 41

must respond to surrounding events in
real-time. The current wireless network
is reaching its limit and becoming more
of a barrier — without 5G, there will be no
self-driving car.

Conclusion
Most of the 5G network roll-out has
focused on upgrading 4G/LTE using
3GPP’s 5G New Radio Non-Standalone
(5G NR NSA), Release 15, specifications,
which has enabled the launch of a limited
range of 5G services. However, the true
potential of 5G is based on the deploy-
ment of 3GPP’s Release 16 and, further
down the road, Release 17. Applications
such as the autonomous car and factory

ics, Cellular Vehicle-to-Everything (C-V2X),
and infotainment.

Today’s connected car can generate as
much as 4 TB of data per day, equiva-
lent to about 500 movies. Recent devel-
opments in C-V2X communications
technology is already using this data in
many ways. Data from the engine manage-
ment systems, for example, is now being
sent to remote service centres for predic-
tive maintenance. Information about the
local traffic conditions and weather can
also feed into Public Safety Systems. Even
driver behaviour and vehicle mileage can
feed databases for usage-based insurance
schemes.

Over the past 5 years, the 3rd Generation
Partnership Project (3GPP), which is a
global standards body for cellular telecom-
munications technologies, including radio
access, core network and service capabil-
ities, which provide a complete system
description for mobile telecommunica-
tions, has been increasing the function-
ality of C-V2X in line with developments
in cellular networking technology. The
capabilities of Release 16 are paving
the way for advanced driver-assistance
systems (ADAS).

Although widespread availability of
self-driving cars may seem a while away,
there have been some very high-profile
trials. Tesla, Google, and BMW are all making
the headlines, building the general public’s
expectations and driving momentum. Many
high-end vehicles already have some level
of autonomy, some up to Level 3 (L3), which
also depend on C-V2X technologies.

Although 4G/LTE networks support many
of the applications mentioned above,
the escalating volume of shared data
puts increasing pressure on the avail-
able bandwidth. In addition, as critical
onboard safety and energy management
systems become ever more sophisticated,
low latency performance becomes a neces-
sity. The network speeds and cloud-edge
processing capabilities must support
human-reflex levels of latency to realise
higher levels of autonomy. So too, for more
sophisticated ADAS, the connected car

autonomy will only become a reality when
they have easy access to this next level of
network performance. The initial roll-out
of 5G has been somewhat cautious, which
has been hampered by the impact of the
global pandemic. The second wave of the
5G network roll-out will certainly acceler-
ate demand for a broad spectrum of yet to
be discovered applications.

220061-01

For more 5G information, visit Mouser’s
Empowering Innovation Together site:
www.mouser.com/
empowering-innovation/5G

ELEKTOR INDUSTRY

About the Author
As Mouser Electronics’s Technical Marketing Manager for EMEA, Mark Patrick is respon-
sible for the creation and circulation of technical content within the region — content that
is key to Mouser’s strategy to support, inform and inspire its engineering audience. Prior to
leading the Technical Marketing team, Patrick was part of the EMEA Supplier Marketing team
and played a vital role in establishing and developing relationships with key manufacturing
partners. In addition to a variety of technical and marketing positions, Patrick’s previous
roles include eight years at Texas Instruments in Applications Support and Technical Sales.
A “hands-on” engineer at heart, with a passion for vintage synthesizers and motorcycles, he
thinks nothing of carrying out repairs on either. Patrick holds a first class Honours Degree
in Electronics Engineering from Coventry University.

42 embedded world Special 2022 www.elektormagazine.com

When we speak of the Internet of Things (IoT), we acknowledge that
more and more things in our daily lives are becoming connected to
the Internet. It starts with lights, heaters and sensors in the home
and continues with cars, traffic lights, shipping containers and much
more. Small network-capable components are installed in each of the
connected things, which enable exchange of information.

The best way to get to know how to connect your own applications
to the IoT is to start out with a simple practical example. In this article
we create a link between a Wi-Fi enabled push button and a Wi-Fi
enabled relay; the relay can be activated remotely by the button and
reports its status back to the push button.

Select the Components
As with all projects, the right components must first be selected.
This is where the ESP-C3-12F kit (Figure 1), which is available in the
Elektor Store, comes into play. This board features a Wi-Fi-enabled
ESP32-C3 microcontroller from Espressif. The ESP32-C3 is a replace-
ment for the proven ESP8266. In addition to a modern CPU core, the
chip offers a good mix of integrated peripherals that are both begin-
ner-friendly and powerful. (Refer to our review about the ESP32-C3
[1].) An overview of the integrated hardware blocks are depicted in
Figure 2. In addition to the ESP32-C3, a RGB LED and a USB serial
converter are also integrated on the board. We will need two ESP-C3-
12F kits for our project.

Your First Steps with an
ESP32-C3 and the IoT
A Wi-Fi Button and Relay

By Mathias Claußen (Elektor)

The IoT is not a closed book of hidden secrets. Powerful controllers like the new ESP32-C3
and newbie-friendly development environments like the Arduino IDE make developing
small projects a piece of cake.

training

lektor embedded world Special 2022 43

Pi Zero 2 W bundle (box). For our purposes, it doesn’t however need
to be a Raspberry Pi. Any PC running a Linux distribution such as
Ubuntu [3] will also prove perfectly adequate.

Before we get into the project, let’s take a closer look at how the control
and exchange of data takes place in this setup.

MQTT
Any IoT device, whether it’s a sensor or actuator, needs to transfer data.
For this purpose, we can either go the long way around by developing
our own proprietary communication protocol or we can use standard,
established protocols. One such system which has become widespread
is MQTT. Originally, it was an acronym for “Message Queuing Telemetry
Transport,” but as the system developed, the title no longer accurately
described its function. In 2013, it was officially decided that MQTT
would be a label [4].

The MQTT protocol takes care of the exchange of messages using a
broker (server) without specifying what the messages look like. You
can compare this to sending a letter: the logistics and the format of

In addition to the ESP-C3-12F kits, a sensor and an actuator are also
required. That’s where the Elektor 37-in-1 sensor kit comes in handy,
this kit includes 35 sensors (the original version had 37, but two of them
contained mercury and have since been omitted on safety grounds). An
overview of the sensors of the kit (Figure 3) can be found in Figure 4
and the information document [2]. First of all, we will take the Joystick
module and use its push button feature to provide control input to the
system. The relay module can now connected to the other microcon-
troller board and acts as the actuator in the system. A few (female/
female) flying leads are required to connect the modules. These are
included in the Pimoroni “Mini Breadboards & Jumpers” maker kit.
(See the Related Products box.)

We also need a computer, such as a Raspberry Pi, which will act as
a local server for the IoT devices to exchange their data. An original
Raspberry Pi version 1 would in fact do the job, but we recommend
at least a Raspberry Pi 2 for this application. On-board Wi-Fi was not
included until Raspberry Pi model 3B, so to use earlier versions, a
simple Wi-Fi dongle or Ethernet cable will also be required. If you need
to buy a small but powerful Raspberry Pi, take a look at the Raspberry

Figure 1: The ESP32-C3-12F Kit. Figure 2: Functional blocks of the ESP32-C3
(Source: ESP32-C3 datasheet).

Figure 3: The Elektor 37-in-1 sensor kit. Figure 4: A whole bunch of sensors and actuators are included.

44 embedded world Special 2022 www.elektormagazine.com

connection with MQTT, but also in many other areas. JavaScript, the
programming language from which JSON is derived, is one of the
core technologies on which the World Wide Web is based today. A
good introduction to JSON with practical examples can be found on
the Mozilla [6] site.

Setting Up the IoT Environment: The MQTT Broker
As with all projects, proper preparation helps avoid unexpected
surprises later. To handle MQTT messages, we require a broker device
that can either exist on the Internet or we can install one locally on our
network. A local broker means we won’t need to rely on cloud services
for IoT functionality that for our purposes will only be used to transfer
messages between locally connected devices. The broker can be built
using a “retired” PC or Raspberry Pi, for example. Using Node-RED,
we get a complete toolbox for developing network applications that
is not just limited to processing MQTT messages. Node-RED [7] has
already been used frequently at Elektor to process MQTT data and
can be installed quickly on a Raspberry Pi [8] or a PC [9] thanks to
the detailed instructions.

The Arduino IDE
The Arduino IDE is used here as the development environment.
The IDE’s editor is not the best in its class, but currently offers the
most stable support for the ESP32-C3. The Arduino IDE [10] can be
downloaded and installed free of charge from the Arduino homepage.
The Arduino ESP32 support (as described in the Espressif documen-
tation [11]) must now be installed. The settings for the board are made
as shown in Figure 5.

In addition to the Arduino ESP32 support, a few libraries will also be
required for our first steps. In our example for the ESP32-C3 to be able
to send data via MQTT/JSON, we will need to install Nick O’Leary’s
PubSubClient and Benoit Blanchon’s ArduinoJson libraries. These can
be installed using the Arduino IDE Library Manager (Figures 6 and 7).

Assembling the Hardware
The two ESP32-C3 based modules are assembled according to the
circuit diagrams in Figure 8 and Figure 9. The joystick and relay
modules require just three wires connected to the respective ESP32-C3

the envelope are specified by the postal company, but the message
in the envelope and the language in which it is written is entirely up
to the user.

Which “language” should we choose to send our messages? Again,
there are several options. One popular choice (not only used for MQTT)
is Java Script Object Notation (JSON).

JSON
JSON is a lightweight data interchange format for message transfer
that is easily generated and interpreted even by small microcontrol-
lers. In addition, JSON text is not only easy to understand for humans,
but also easy to write. An overview of the JSON specification can be
found on the JSON standard website [5]. JSON is not only used in

Figure 5: Configuration of the ESP32-C3 in the Arduino IDE.

Figure 6: PubSubClient in the
Arduino Library Manager.

Figure 7: ArduinoJson in the
Arduino Library Manager.

lektor embedded world Special 2022 45

These three #defines at the beginning of the Arduino sketch must
be adjusted for your own network. The SSID and PASSWORD of your
network need to be entered in the appropriate position between the
quotation marks. The IP address of the Node-RED computer in its own
network is specified for the MQTT server. Once both sketches (for the
relay and for the button) have been edited they can be uploaded to the
respective ESP32-C3. Both ESP32s can then be powered up and the
large LED on each board should start flashing white. This indicates
that the ESP32-C3 is attempting to connect to the Wi-Fi network.
The LED should then light continuously when a board successfully
connects. The LED colour will depend on the board’s function: the
board with the relay connected will light up white. The board with the
pushbutton connected will light up red (relay off) or green (relay on)
— i.e., according to the relay status.

board. Note the relay board is powered from the 5 V supply pin.
Figure 10 shows all the modules and controllers connected together.

Software Setup
The source code for this project is also available on GitHub [12]. The
sketches for the two ESP32-C3 controllers can be downloaded from
there. It will be necessary to enter some information about your local
network to these files before we can upload them to the ESP32s.
Everything must be set appropriately so that the two controllers can
exchange data with the local MQTT broker. For this purpose, #define
directives are present at the beginning of the two Arduino sketches:

#define WIFI_SSID "changeme"
#define WIFI_PASS "changeme"
#define MQTT_SERVER "test.mosquitto.org"

Figure 10: The complete
hardware hook up.

Figure 8: Circuit diagram of the ESP32-C3 and Joystick. Figure 9: Circuit diagram of the ESP32-C3 and Relay.

220017-011

GND
VCC
VRx
VRy
SW

Joystick

MOD2

USB

IO18
IO19

IO10

ADC
IO0

IO1
IO2
IO3

IO4
IO5

GND
3V3

GND

GND

GND

3V3

3V3

IO9

IO8

IO6
IO7

10
11
12
13
14
15

NC

NC

EN
NC

5V

NC

NC

RX
TX

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16

1
2
3
4
5
6
7
8
9

MOD1

ESP32-C3F-Kit

Relais

Relais

NC
COM
NO

220017-008

MOD2

USB

GND
VCC

IO18
IO19

IO10

ADC
IO0

IO1
IO2
IO3

IO4
IO5

GND
3V3

GND

GND

GND

3V3

3V3

IO9

IO8

IO6
IO7

10
11
12
13
14
15

NC

NC

EN
NC

5V

NC

NC

RX
TX

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16

1
2
3
4
5
6
7
8
9

MOD1

ESP32-C3F-Kit

46 embedded world Special 2022 www.elektormagazine.com

interested in a certain topic will receive the messages sent under this
topic. The sender, on the other hand, does not have to worry about
distribution. It only sends (“publishes”) its messages to the broker.

The ESP32-C3 with the relay subscribes to the BUTTON topic in its
code using client.subscribe(MQTT_TOPIC_IN); , where MQTT_
TOPIC_IN is “BUTTON” here. Every time a message is triggered by the
button, it goes to the MQTT broker. It is then delivered to the ESP32-
C3 with the relay, causing the relay to toggle.

When the relay changes it state, its controller sends a message to the
MQTT broker under the topic “RELAIS” (RELAY), in which the current
state (whether on or off) is included. The ESP32-C3 with button, in turn,
has subscribed to the “RELAIS” topic at the MQTT broker and thereby
receives the message with the new status, as shown in Figure 12. This
causes the LED colour to be set to red or green.

The nice thing about this structure is that a second button and control-
ler can also be integrated into the network to send messages under
the topic “BUTTON” — just like the first button. The ESP32-C3 with
the relay will then respond to the control data from either button and
carry out the appropriate switching operation. If you’re interested in

This now shows that both ESP32-C3s are operating successfully.
Pressing the button will change the state of the relay and the colour
of the LED will change from red to green or vice versa. The button
of one ESP32-C3 can thus successfully control the relay of the other
ESP32-C3, and it also receives feedback on the status of the relay.
Time to celebrate. Your first IoT application is running! But how exactly
does the data exchange work?

To the Relay and Back Again
First, let’s look at the path a button press takes to the relay. Figure 11
shows how the message is packed layer by layer and then sent to
the broker via Wi-Fi. In the source code, this is done using client.
publish(MQTT_TOPIC_OUT, (const uint8_t*)buffer, n, true);.

Why is this function called publish and not simply send? This is due
to the way the data is later distributed in MQTT. On an MQTT broker,
messages are distributed based on a topic; in this case, the topic
(MQTT_TOPIC_OUT) “BUTTON”. When connecting to the MQTT broker,
the client (i.e., the ESP32-C3 of our relay) can indicate which topic is
of interest (i.e., to “subscribe” to this news channel).

Each participant who has informed the MQTT broker that they are

Figure 11: Data transfer to the Broker and back. Figure 12: Feedback from the Relay.

lektor embedded world Special 2022 47

experimenting further with MQTT, then take a look at Elektor’s other
projects that use MQTT to send data. Examples are the weather station
[13] and the monster LED clock with an external temperature sensor
[14]. For more about MQTT and how you can use it to send data to
cloud platforms, for example, refer to the series, “My Journey into The
Cloud” [15].

An Ideal Platform for the IoT
IoT does not need to be complicated. As we have shown here, the
technology is quite mature, and you can develop IoT devices quickly
using simple tools and the proper components. Applications can of
course be more complex than just a simple push button and relay. From
domestic heating control to the front doorbell, there are many practi-
cal applications that can benefit from IoT connectivity. The ESP32-C3
is a powerful and inexpensive board that makes an ideal platform to
develop your own ideas!

220017-01

Contributors
Idea and Text: Mathias Claußen
Editor: Jens Nickel
Translator: Martin Cooke
Layout: Giel Dols

Questions or Comments?
Do you have any technical questions or comments about this
article? Email the author at mathias.claussen@elektor.com or
contact the Elektor team at editor@elektor.com.

WEB LINKS

[1] M. Claußen, “Getting Started with the ESP32-C3 RISC-V MCU,” Elektor 1-2/2022: www.elektormagazine.com/210466-01
[2] Elektor 37-in-1 Sensor-Kit Documentation: www.elektor.com/amfile/file/download/file/1170/product/6171/
[3] Ubuntu Linux Distribution: https://ubuntu.com/
[4] OASIS MQTT TC Minutes from 25.04.2013:
 www.oasis-open.org/committees/download.php/49028/OASIS_MQTT_TC_minutes_25042013.pdf
[5] JSON.org: www.json.org/json-de.html
[6] Mozilla Web Docs: Working with JSON: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
[7] Node-RED: https://nodered.org/
[8] Node-RED Installation on the Raspberry Pi: https://nodered.org/docs/getting-started/raspberrypi
[9] Node-RED Installation on a PC: https://nodered.org/docs/getting-started/local
[10] Arduino IDE download: www.arduino.cc/en/software
[11] Espressif Arduino-ESP32 Installation instructions: https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
[12] Elektor GitHub Repository: https://github.com/ElektorLabs/220017-ESP32-C3-and-IoT_First-steps
[13] R. Aarts, “ESP32 Weather Station,” Elektor 1-2/2019: www.elektormagazine.com/magazine/elektor-70/42351
[14] M. Claußen, “A Monster LED Clock with Wi-Fi and Temperature Display,” Elektor 5-6/2019:
 www.elektormagazine.com/magazine/elektor-96/42659
[15] J. Nickel, “My Journey into the Cloud,” Elektormagazine.com:
 www.elektormagazine.com/search?query=My+journey+into+the+cloud

RELATED PRODUCTS

 > ESP-C3-12F-Kit Development Board with 4 MB Flash
(SKU 19855)
www.elektor.com/19855

 > Elektor 37-in-1 Sensor kit (SKU 16843)
www.elektor.com/16843

 > Raspberry Pi Zero 2 W Bundle (SKU 19952)
www.elektor.com/19952

 > Pimoroni Maker Essentials – Mini-Breadboards &
Jumper cables (SKU 18430)
www.elektor.com/18430

48 embedded world Special 2022 www.elektormagazine.com Partner Content

What Is the WizFi360?
WizFi360 enables microcontrollers to
connect to 2.4-GHz Wi-Fi using IEEE
802.11b/g/n standards. The module has
been designed to provide designers with
a simple Wi-Fi solution. For easy migration
from ESP8266, WizFi360 supports Espressif-
like AT command list.

The following attributes of WizFi360 were
extracted from its datasheet [1]:

 > Wi-Fi 2.4G, 802.11 b/g/n
 > Station/SoftAP/SoftAP+Station opera-

tion modes
 > UART/SPI interface
 > “Data pass-through” and “AT command

data transfer” mode
 > Baudrate up to 2 Mbps with 16

common values
 > Support firmware upgrade by UART

Download/OTA (via WLAN)

 > Industrial grade (operating tempera-
ture range: -40°C ~ 85°C)

 > CE, FCC, KC, K-MIC(TELEC), RoHS,
REACH certification

WizFi360 comes in two options: with
onboard pattern antenna or u.fl connec-
tor. WIZnet also provides internet-offload
(io) modules with various form factors
(Figure 1). WizFi360io-C is an interface
board with SMW200-06 connector and 5 V
support, WizFi360io-H is a pin-header type
interface board with 2.00 mm pin header.

WIZnet also provides various evalua-
tion boards for easy project prototyping
(Figure 2). Arduino-compatible WizFi360-
EVB-Shield can be used for experiments,
tests and verifications of WizFi360. Lately
WIZnet released the RP2040-based
WizFi360-EVB-Pico — a Raspberry Pi Pico
clone but with Wi-Fi connectivity.

Accelerate Internet of Things
Solutions
WizFi360 is a small but powerful module that
supports SSL using MbedTLS library. With
its help, users can easily connect WizFi360
to cloud or MQTTS broker. In October 2019,
WIZnet announced it had joined Microsoft
Azure Certified for Internet of Things (IoT),
ensuring customers get IoT solutions up and
running quickly with hardware and software
that has been pre-tested and verified to work
with Microsoft Azure IoT services.

WizFi360 in Various Ecosystems
DIY enthusiasts and hobbyists can easily
develop their application for WizFi360
using WizFi360 Arduino library currently
maintained by our friends in Kocoafab [2].
Furthermore, as WIZnet implemented
Espressif-like AT commands, users may
even use WiFiEsp library, for more details
and guide refer to [3].

A Closer Look at
WIZnet WizFi360 Module
Contributed by WIZnet

The WizFi360 is a low-cost Wi-Fi solution which not only is Azure Certified and supports
AWS SDK Examples, but also the official Wi-Fi Shield on Arm Open-CMSIS-pack and Keil
Studio Cloud; and furthermore, comes in a Raspberry Pi Pico compatible board form-factor.
In this article, we will explain the main features of WizFi360 modules and evaluation boards.

background

Figure 1: WizFi360 comes in
two options: with onboard
pattern antenna or u.fl
connector. Also, WIZnet
provides internet-offload (io)
modules with various form
factors.

WizFi360-PA WizFi360-CON WizFi360io-C WizFi360io-H

lektor embedded world Special 2022 49Partner Content

Other WIZnet Wi-Fi Modules
Since 2015 WIZnet released a few Wi-Fi
modules using chips from various manufac-
turers. In the current lineup there are:
• WizFi630S [7] - gateway module that
integrates 1T1R 802.11 Wi-Fi, a 580 MHz CPU,
Ethernet PHY, USB2.0 host, SD-XC, I2S, I2C
and more GPIOs;
• WizFi310 [8] - small size wireless module
for the highest level of integration, featuring
802.11b/g/n. This module is included in Ubidot
supports boards.
Information about other modules can be
found on WIZnet’s website www.wiznet.io.

About WIZnet
WIZnet is a fabless IT company that provides
Internet processors for the IoT.
WIZnet is the sole innovator to patent the
hardwired TCP/IP technology into a micro-
processor chip in 2001. Since then, a yearly
average of 10 million WIZnet chips have been
used in various embedded Internet devices
worldwide.
Since establishing a loyal brand image with
customers, WIZnet cooperates with 70 distrib-
utors worldwide with branch offices in USA,
China, and India for competitive project market-
ing and faster technical support.

Interested in Testing WizFi360?
Join WizFi360 Design Contest!
WIZnet is holding a WizFi360 design
contest. To celebrate the launch of
WizFi360-EVB-Pico, we are offering a free
sample (WizFi360 module, WizFi360-EVB-
Mini or WizFi360-EVB-Pico) to all partici-
pants. It’s a great opportunity to bring your
own ideas to life with a variety of provided
open source and examples. Join our contest
and win 1 of 30 iPad Pros. Follow the link
[6] for more details.

To Conclude
In this article, we’ve taken a closer look at
WizFi360 Wi-Fi module and how it is being
used for development of various applica-
tions in different ecosystems. Since its
release, WIZnet already sold more than 1
million modules globally.

WiFi module WizFi360 is a perfect choice
for mobile wireless applications such as
remote monitoring and sensor applica-
tions. Ease of integration and program-
ming can vastly reduce development time
and minimize system cost. Depending on
your project needs, WIZnet is ready to offer
firmware customization services. Should
it be custom AT-command or applica-
tion-specific program, we are ready to
support all!

220277-01

For RP2040 family boards, WIZnet already
released C/C++ SDK and sample codes [4].
CircuitPython and MicroPython SDK are
currently being prepared.

WIZnet joined ARM ecosystem in 2015,
when WIZwiki-W7500 was certified by
Arm Mbed. To continue and prosper partner-
ship between two companies, WizFi360 was
selected as one of the official shields for
official Wi-Fi Shield on Arm Open-CMSIS-
Pack and Keil Studio Cloud development.

We at WIZnet are trying to provide as many
tools and example codes as possible to ease
developers’ work.

How to Procure?
Despite global silicon and semiconductor
shortage, WIZnet is doing its best not to
increase prices for their products. Unlike
many manufactures, in March 2022 prices
for WizFi360 were lowered up to 20%
globally.

Furthermore, WIZnet launches new direct
sales service [5] online storefront for VAR
(value-added-resellers) partners and UCC
(user-created-content) makers. WizFi360
is one of two products currently being sold
through this service. It is necessary to fill
out the contact form to get the most reason-
able price and best lead time.

Figure 2: WIZnet provides various evaluation boards for easy project prototyping.

WEB LINKS

[1] WizFi360 datasheet: https://docs.wiznet.io/Product/Wi-Fi-Module/WizFi360/documents
[2] Arduino Library: www.arduino.cc/reference/en/libraries/wizfi360/
[3] WiFiEsp library: https://github.com/wizfi/WizFi360EVB-Arduino
[4] C/C++ SDK and sample codes for RP2040: https://docs.wiznet.io/Product/Open-Source-Hardware/wizfi360-evb-pico/
[5] Direct sales service: https://direct.wiznet.io
[6] Contest and free Sample: https://maker.wiznet.io
[7] WizFi630s: www.wiznet.io/product-item/wizfi630s
[8] WizFi310: www.wiznet.io/product-item/wizfi310

WizFi360-EVB-Shield WizFi360-EVB-Mini WizFi360-EVB-Pico

50 embedded world Special 2022 www.elektormagazine.com

background

IoT Cloud a la Arduino

Source: https://dronebotworkshop.com

By Tam Hanna (Slovakia)

The Arduino IoT Cloud offers IoT application
developers a convenient solution for
implementing a cloud back end without
having to struggle with MQTT. Curious? Let’s
take a look.
Lots of microcontroller applications nowadays involve an Internet
of Things (IoT) application where information is disseminated via
IoT cloud services and an MQTT broker. Creating this type of appli-
cation using a local development environment like the traditional
Arduino IDE can sometimes be awkward. The Arduino Cloud
shifts the IDE up into the cloud so that your browser becomes a
window into the IDE. We tried it out by sending a variable value
to the cloud to make an LED flash on the bench. Then we tried
to break it.

The basis of all IoT devices is of course the Thing. In the Arduino
IoT Cloud development environment, the Thing is a virtual object
that exists in the cloud. In the real world, it is as an object such as
a server, a controller board, or a similarly “intelligent” device [1].
Here your Thing is built in the cloud using an online editor to write
a Sketch describing how it should behave and respond by using a
whole range of Variables.

Who Will Use the Arduino IoT Cloud?
Before we begin, it’s important to acknowledge that the Arduino
IoT Cloud is not an alternative for other dedicated cloud computing

platforms such as Amazon AWS IoT Core, Microsoft IoT Hub, or
Yandex IoT Core. If you have large numbers of devices and data to
manage, these more established IoT cloud services are the way to go.

At the introduction of the latest incarnation of The Arduino IoT
cloud, Massimo Banzi, CTO at Arduino, expressed his ambitions for
the platform saying that: “Arduino now offers a complete platform
with the MKR family; providing a streamline way to create local IoT
nodes and edge devices. These use a range of connectivity options
and compatibility with third-party hardware, gateway and cloud
systems. The Arduino IoT Cloud allows users to manage, configure
and connect, not only Arduino hardware but also the vast majority
of Linux-based devices — truly democratising IoT development.”

Its support of the MKR IoT-targeted range of Arduino boards and
some other popular third-party boards is a welcome addition and
would make many IoT system developers give this accessible devel-
opment platform a second look.

Setting Up the Hardware
Only the most basic plan of the four possible versions of the Arduino
Cloud is free to use. You can check out the various plans and their
features in Figure 1 and decide which package best meets your
needs. Of interest to the maker community generally is Arduino
Cloud’s support of third-party boards, such as the popular ESP8266
and ESP32 family of devices (Table 1), and the list of compati-
ble platforms [2]. Driver libraries also allow various Linux-based
systems to upload and download information to the Arduino cloud.

lektor embedded world Special 2022 51

An Arduino Nano RP2040 Connect module is used here as the target
board to test the Arduino Cloud functions. This board is based on
the RP2040 microcontroller from the Raspberry Pi Foundation
and includes a u-blox Wi-Fi module. Before setting up the Arduino
cloud, the board is connected to a computer via a USB cable.

First, we need to visit the website [3] and apply for a new Arduino
account. For our purposes, we will stick to the basic free plan which
is explicitly aimed at newcomers to the system. First, we click on
the Create Thing button to create a new thing.

The overview in Figure 2 now shows the configuration of the three
basic components of the development environment. I have removed
a previous Arduino account and all configuration parameters so that
I start with a fresh device setup. The following steps are performed
on a machine running Windows 10, but the process is identical on
the Ubuntu Linux environment and I have found that hardware
detection usually works better under Unix.

Now we can click on the shortcut icon in the Device section and
choose to Set Up an Arduino Device. A few seconds after clicking
this option, the back end will point out that the component called
Arduino Create Agent is missing. Click the Download button to
download the software and install it in the normal way.

Note that Create Agent is browser-specific: if you install under
Chrome, you will need to reinstall. Any firewall warnings that pop
up should be acknowledged. Make sure that you allow access to

Table 1: Boards supported by the Arduino Cloud

WLAN
 > MKR 1000 WiFi
 > MKR WiFi 1010
 > Nano RP2040 Connect
 > Nano 33 IoT
 > Portenta H7
LoRaWAN

 > MKR WAN 1300
 > MKR WAN 1310
GSM/NB-IoT

 > MKR GSM 1400
 > MKR NB 1500
ESP32/ESP8266

 > wide range of third-party boards

Figure 1: Which plan is best for you? (Plan pricing as of 1/20/2022.)

52 embedded world Special 2022 www.elektormagazine.com

code and sends it to the connected RP2040 using the Arduino Cloud
Agent. If the compiled code is delivered successfully, the message
"Untitled_dec25a uploaded successfully on board Arduino Nano RP2040
Connect (/dev/ttyACM0)” is displayed.

Now after the obligatory Reset, the RP2040 will start phoning
home using its Wi-Fi transmitter. After a while and pressing F5
several times the device will appear with “Status: online” as shown
in Figure 3.

If you chose to subscribe to one of the more comprehensive Arduino
Cloud plans, you can receive software updates directly via Wi-Fi;
but for our simple experiments using the free plan, a wired connec-
tion is necessary.

A Closer Look
The basic editor tool of the Sketch tab is not so useful, but by clicking
on the Open full editor button, we get a fully-fledged cloud-based
IDE that allows us to edit smaller projects more comfortably. First,
let’s look at the contents of the thingProperties.h file, which contains
structural elements of the sketch.

First, we see the following declarations that provide the elements
required for Wi-Fi access:

const char SSID[] = SECRET_SSID; // Network SSID (name)
const char PASS[] = SECRET_PASS; // Network password
// (use for WPA, or use as key for WEP)

The Arduino cloud takes care of entering the name and password
using the settings already entered in the Network section. The next
part contains the following two variables the names of which should
be familiar from their declaration in the Variables section:

int ledIntenInt;
bool ledIntenBool;

The Arduino cloud implements the variables “in the back end" as
standard C variables equipped with additional properties. These
properties can be found, among other things, in the initProperties

private and public networks alike. As a result, the Arduino Create
Agent is now resident in your taskbar — in some cases it may need
to be called up again from the start menu but that now completes
the driver installation.

In the next step, we will refresh the view until the Arduino cloud
informs us that our Nano RP2040 Connect board has been recog-
nized. Next, click the Configure button to launch the configuration
wizard — it will ask you to enter a ’friendly” name and then initial-
ize the target system’s secure element with the basic communi-
cations software.

Problems sometimes arise during network provisioning under
Windows. The more reliable and successful method is to do this
using Linux instead. Incidentally, the Network section is not
automatically enabled by the Arduino cloud. It is only available
when you create one of the variables intended for data exchange.

We can now click on Variables, to open a dialog and add a new
variable. First we assign the name ledIntenBool and assign Boolean
in the data type field. Funnily enough, the Arduino cloud not only
supports C programming units, but also implements wrappers
around real world variables.

If you want to limit yourself to C only, we recommend selecting the
Basic Types option. Theoretically, we could then make settings in
the Variable Permission and Variable Update Policy fields, but the
default settings will be sufficient for our purposes, which is why
we now close the dialog. In the next step, we then create a field of
the Integer Number type, to which we give the name ledIntenInt.

Preparing the Code
After creating the variables, red dots in the Sketch tab, indicate
changes to the program structure. Now it is possible to click on the
shortcut icon in the Network section to enter the Wi-Fi settings. My
preference is to enter the values using a command line tool such
as iwlist on a Linux machine and then copy them to the clipboard.

In the next step, we switch to the Sketch tab and click on the Verify
and Upload button. The Arduino Cloud then starts compiling the

Figure 3: This Arduino is connected to the Cloud.

Figure 2: The IoT Cloud leads the developer step by step through to the goal.

lektor embedded world Special 2022 53

void onTestScheduleChange() {
}
void onLedIntenBoolChange() {
}
void onLedIntenIntChange() {
}

onLedIntenBoolChange and onLedIntenIntChange are respon-
sible for the variables created remotely in the back end, while
onTestScheduleChange helps implement “internal” functions of
the Arduino cloud.

In the next step, we can take care of this by making use of the
built-in “intelligent” capabilities of the Cloud. The Arduino board
we are using here is fitted with a standard (red) LED on Pin 13 and
an RGB LED (channels LEDR, LEDG and LEDB), which can be driven
by three PWM signals to change the overall colour output.

Now we can return to the setup function, and initialise the neces-
sary pins:

void setup() {
. . .
 ArduinoCloud.printDebugInfo();

 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(LEDB, OUTPUT);
}

Changes triggered in the cloud activate the listener, which writes
the incoming values to the hardware:

void onLedIntenBoolChange() {
 digitalWrite(LED_BUILTIN, ledIntenBool);
}
void onLedIntenIntChange() {
 analogWrite(LEDB, ledIntenInt);
}

Method, which takes care of setting up the primitives and struc-
tures required for cloud communication according to the follow-
ing scheme:

void initProperties() {
ArduinoCloud.setThingId(THING_ID);
ArduinoCloud.addProperty(ledIntenInt, READWRITE,
ON_CHANGE, onLedIntenIntChange);
ArduinoCloud.addProperty(ledIntenBool, READWRITE,
 ON_CHANGE, onLedIntenBoolChange);
}

It is interesting here that the addProperty method, takes
care of “registering” the attribute. Note the passing of the
onLedIntenIntChange and onLedIntenBoolChange function point-
ers - they will play an important role later on.

The application control function is described in the sketch, which
begins with the inclusion of the header (not shown here). This is
then followed by the sketch initialization, which runs according
to the following scheme:

void setup() {
 Serial.begin(9600);
 delay(1500);

 initProperties();

 ArduinoCloud.begin(ArduinoIoTPreferredConnection);
 setDebugMessageLevel(2);
 ArduinoCloud.printDebugInfo();
}

From the point of view of the Arduino programming environ-
ment, the Arduino cloud is a hardware driver like any other. The
ArduinoCloud global object exposes a set of functions that your
code uses to communicate with the cloud driver. Of particular
importance here is the call to setDebugMessageLevel, which sets
the “verbosity” of the driver — the higher the value, the more debug
information the cloud driver outputs over the board’s serial port.

In the case of “complicated” drivers, the question always arises
as to how the processing power is allocated. The project skeleton
created for us by the Arduino Cloud can answer this question in
the loop method, which takes care of the allocation of computing
power according to the following scheme:

void loop() {
 ArduinoCloud.update();
}

The Arduino cloud gives us the following three listener methods
by default:

Figure 4: The Arduino IoT cloud provides detailed information
about the current state of the information stored in a variable.

54 embedded world Special 2022 www.elektormagazine.com

Figure 6: The editing interface for controls is “modal”.

Figure 7: The Cloud Scheduler is a data type just like all the others.

At this point, you can transfer the sketch to the circuit board
again. The RGB LED uses common anode connections so individ-
ual colours are controlled by outputting a 0 to turn on the corre-
sponding LED. The variables are initialised as shown in Figure 4,
so that the blue diode of the RGB LED lights up after successful
initialization.

Modifing the Variable Contents
If we return to the main back end of the Arduino cloud, we can click
on the Dashboards tab, which, if this is a new account, will prompt
you to create a new dashboard. Now click the Build Dashboard
button to launch the editor, which will take a moment or two even
if you have a fast Internet connection.

To modify and add elements to the dashboard click on the edit
(pencil) icon on the top left of the display (Figure 5). Once this
mode is selected the blue ADD button appears which you can use
to show the drop down list of available widgets. First, we select a
Switch widget, which then appears in the editing interface shown
in Figure 6.

Now over to the right of the display is the Linked Variable field
with a link button. Click on it to activate a list of all Things and
Variables contained in the cloud account. Here we can choose the
ledIntenBool variable and link it using the Link Variable button.
The state of ledIntenBool will now be controlled by the state of the
Switch. A click on the DONE button closes the editing interface and
the switch is now incorporated into the dashboard. Now we can click
on the eye icon to release the switch to activate. Toggling the switch
on and off now controls the red LED next to the microUSB socket.

In order to be able to set the brightness of the blue LED, we have
to switch the dashboard editor back to edit mode and add a new
control again by using Add -> Widgets. This time I chose the Slider
type. In its editing interface, we set its Value Range from 0 - 255.
The link is made by the variable letIntenInt, which represents
the RGB LED “brightness control”. Last but not least, we switch to
activation mode here and see that changes to the slider position
now affect the brightness of the blue LED.

Using the Scheduler
As I write this article, a function for setting up scheduled tasks or
web cron-jobs is a new feature: it uses a variable type called Cloud-
Schedule that you can define to be true or false at a specific time
and for a specific time period. It’s not necessary to invoke any timer
function because this variable is set or reset automatically in the
Arduino IoT Cloud, according to how you configure it. Tasks can
then be triggered by checking the state of this variable. To demon-
strate the possibilities, let’s create a new variable of type Schedule.
Figure 7 shows the desired configuration. We can now see the
new variable type in the code:

CloudSchedule tamsSchedule;

Figure 5: Switch the dashboard to edit mode by clicking on the
pencil icon top left.

lektor embedded world Special 2022 55

At this point, I could not resist another small system test to see what
happens when the RF link goes down. The “lab Wi-Fi” was turned
off and the Arduino began to act erratically by random switch-
ing the blue element of the RGB LED and also the LED on pin 13,
eventually after a few seconds it performed a complete restart.

At the time this article went to press, it was not really clear to me
how exactly the Arduino cloud recovers from the loss of the radio
link between the end device and server.

A Convenient Option
It’s clear that the Arduino IoT Cloud is still a work in progress and
is under constant development and improvement. It does however
have great potential and offers the IoT application developer a
convenient and low-threshold option for implementing a cloud
back end without having the need to struggle with MQTT and Co.
Despite the odd hiccup I can thoroughly recommend this product!

 210550-01

Contributors
Idea, Illustrations and Text: Tam Hanna
Editor: Rolf Gerstendorf
Translation: Martin Cooke
Layout: Harmen Heida

Questions or Comments?
Do you have any technical questions or comments about this article?
Contact the author at tamhan@tamoggemon.com or the Elektor
team at editor@elektor.com.

The time parameters for this variable are configured via the
dashboard. The settings page shown in Figure 8 show the control
elements provided for this purpose.

In the following step, we need to take care of the “local” processing
of the values contained in tamsSchedule:

void setup() {
. . .

 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(LEDB, OUTPUT);
 pinMode(LEDR, OUTPUT);
}

void loop() {
 ArduinoCloud.update();
 // Your code here
 if(tamsSchedule.isActive()){
 digitalWrite(LEDR, HIGH);
 }
 else{
 digitalWrite(LEDR, LOW);
 }
}

It is important here that the “writing out” of the information
supplied in tamsSchedule is the exclusive task of the developer. The
cloud is just limited to periodically updating the value contained
in tamsSchedule. The continual polling procedure shown here
in the loop structure may not be optimal from a resource point of
view, but it works without problem. The program can now be sent
to the Arduino where you can watch for the periodic red flashes
coming from the RGB LED.

WEB LINKS

[1] Digital twin: https://en.wikipedia.org/wiki/Digital_twin
[2] Boards supported by the Arduino Cloud:

https://bit.ly/3t8Vl3W
[3] Arduino Things: https://create.arduino.cc/iot/things

RELATED PRODUCTS

 > Arduino MKR WiFi 1010 (SKU 19935)
www.elektor.com/19935

 > Arduino Nano RP2040 connect (SKU 19754)
www.elektor.com/19754

 > Arduino Nano 33 IoT (SKU 19937)
www.elektor.com/19937

Figure 8: The Scheduler is configured using the Dashboard.

56 embedded world Special 2022 www.elektormagazine.com

Like many other hobbyists, I have always been fascinated by radio-
activity and the sensors to detect it. Geiger-Müller tubes [1] are a
common and relatively inexpensive way to measure radiation. My
“GRAD” project is a complete solution for radiation counting in an
Arduino shield form factor. Its main features are dual tube support to
increase sensitivity and very low power consumption.

Introduction to Geiger-Müller Counters
Every Geiger-Müller counter requires four essential functional blocks.

 > Geiger-Müller Tube. The tube has two terminals and is filled
with a low-pressure gas mixture. When biased with the appro-
priate voltage the gas will ionize and briefly conduct electricity
every time it is hit by radiation. Depending on the tube type it is
possible to detect alpha, beta and gamma particles. The SBM-20
used in the GRAD is sensitive to gamma and high energy beta
radiation.

 > High-Voltage Power Supply. The tube must be operated in the
so-called Geiger Plateau. This is a region where the pulse count is

Dual Geiger-Müller Tube
Arduino Shield
A High Sensitivity, Very Low-Power Radiation Sensor

By Gabriele Gorla (Italy/USA)

With two tubes for increased sensitivity, this Geiger-Müller tube shield can turn your Arduino
Uno into an instrument for measuring and recording nuclear radiation. It can even be combined
with a Dragino shield for LoRa-connectivity. Collect radiation data in the “field” — and get access
to it from all over the world!

project

Ele
ktor-labs.com

Elektor-labs.co m

B E S T O FB E S T O F

lektor embedded world Special 2022 57

Zener voltage, Q1 turns on and stops the oscillator. When the output
voltage drops again Q1 will turn off releasing the oscillator. R1 and C3
further reduce the output ripple. Additional series resistors feed each
tube separately (R2 and R3 for GM1, R13 and R14 for GM2).

Counting
Pulses are picked up from the high voltage side of the tube using a DC
blocking capacitor (C6 and C7). The pulse is shaped by the remaining
Schmitt trigger inverters (see Figure 2).

J1 to J4 are the standard Arduino connectors, but GRAD only uses a
few pins. Digital inputs D2 and D3 were chosen as they are interrupt
pins on the Arduino Uno. This allow the Arduino to count pulses in
the background while it is performing other actions.

Arduino digital outputs D8 and D9 are connected to a pair of LEDs

almost independent of the bias
voltage. For common tubes the
bias voltage is between 400 V
and 500 V. The SBM-20 optimal
point is around 400 V.

 > Pulse Detector. The pulses out
of the tube are very short and
of variable voltage. The pulse
detector conditions the signal
so it can be easily counted by
the following stage.

 > Pulse counting. Pulses are
counted over a fixed time inter-
val to calculate a CPS (counts
per second) or CPM (counts
per minute) value. This can be
roughly converted to a dose
rate by using the parameter on
the tube datasheet. An Arduino
board is used for pulse count-
ing and its visualization and/or
logging.

Power Supply
There are many circuits on the
web for Geiger-Müller tube power
supplies. Many are boost convert-
ers built around the 555 timer, some
open loop, some with feedback.
The open-loop designs were not
considered as they require tuning
per board and do not provide
a stable voltage at high pulse
counts. Closed-loop designs are
more suitable as they provide the
required stability. However, to keep
overall power consumption low,
special attention should be paid to
the feedback loop (12 µA of current
@ 400 V is ~5 mW).

To avoid the power penalty of high-voltage feedback, the most elegant
solutions use a non-isolated step-up transformer like the Analog
Devices LT3420. It detects the voltage on the primary side.

We implemented a simple switch mode boost converter with a very low
current feedback. Our design — shown in Figure 1 — is heavily based
on the Theremino Geiger adapters [2]. We mixed the SMD, DIY and
“Flintstones” versions in a fully PTH design with Zener diode feedback.

The Schmitt trigger inverter U1C, R4 and C5 form an oscillator that
generates the pulses to drive the main switch Q2. U1A, U1B and U1D
are in parallel to increase Q2 base current.
The feedback is implemented with a series of very low leakage current
Zener diodes (D2 to D5). When the output voltage exceeds the total

* see text

210404-013

RESERVED
IOREF
RESET
3.3V
5V
GND
GND
VIN

A0
A1
A2
A3
A4
A5

AN
AL

O
G

 IN
PO

W
ER

R
ES

ET
G

N
D

ICSP

SC
K

M
O

SI
M

IS
O

5V

TX 1
RX 0

AREF

D
IG

IT
AL

 (P
W

M
)

SDA

GND

SCL

13
12
11
10
9
8

7
6
5
4
3
2

1 1

1

1

1

1

D5
100V

D4
100V

D3
100V

D2
100V

1000V1000V1000V1000V

1000V1000V

**

–+ – +

Geiger TubeGeiger Tube

HV VCC

131211 10

HV VCCVCC

400V

VCC
ARDUINO UNO

J4

1
2
3
4
5
6
7
8

J3

1
2
3
4
5
6
7
8

J2
1
2
3
4
5
6

J1
10

1
2
3
4
5
6
7
8
9

R12

47
0

D6

R7

47
0

D7

R20
470

R21
470

C20

220µ
6V3

1
2

J9

R18
470

SPK1

SPK2

GM1

R3
5M6

R2
33

0k

R11
330k

R9

5M
6

U1E

C18

22pC6

100p

HVVCC VCC

400V

GM2

R13
5M6

R14

33
0k

R16
330k

R15

5M
6

U1F

C19

22p C7

100p

5 6

U1C

R6
1k

C4

10nR5

10
M

R8

2M
2

Q1

2N3904
C5

100p

R4
2M2

3 4

U1B

9 8

U1D

1 2

U1A

Q2

MJ13003

D1

RGP02-20

L1

4mH7

C12

100n

C14

1µ

C1

220µ
6V3

14

7

U1

R1
330k

C2

4n7

C15

4n7

C3

4n7

C16

4n7

Figure 1: Schematic diagram of the GRAD03 project [3].

58 embedded world Special 2022 www.elektormagazine.com

critical (high-voltage!) components needed for this project, including
data on manufacturers, type numbers and even order codes.

Figure 4 shows the assembled PCB with SBM-20 tubes installed. Note
that component pairs SPK1/SPK2, C3/C16, and C2/C15 respectively
just provide alternative footprints on the PCB; so only SPK1 or SPK2
will be installed. The same goes for C3 or C16, and C2 or C15. J5 and
J6 on the PCB denote two add extra footprints for connecting the
negative terminals of shorter Geiger tubes.

Tube Options
The board is designed to work with 105-mm Soviet SBM-20, STS-5
and the Chinese J305 or the 90-mm J305 and M4011. Any other 400-V
tube will also work with some customized tube mounting. In case of
custom mounting, to minimize parasitic capacitance, it is important
to keep the positive wire as short as possible. For tubes requiring
different voltages, the Zener diode(s) should be changed to obtain the
required voltage. Any diode with 0.5 µA or less of leakage should work.

Performance
The power supply consumes 325 µW (65 µA) at 5 V. In battery-oper-
ated devices the board can also be powered with 3.3 V. At this lower
voltage, the power consumption drops to 150 µW (45 µA).

Arduino Sample Code
A simple Arduino sketch to drive the counter is available in the Project

to visually show when ionizing radiation hits the respective tube. Pin
D4 is connected to piezo speaker SPK1 to provide audible feedback.

Finally, digital output D5 is connected to a low-pass filter formed by
R20, R21 and C20 to connect a simple analog 10 mA panel meter (J9).

PCB Design
The schematic and PCB (Figure 3) were designed in KiCad. The design
files are available for download at this project’s Elektor Labs page
[3] in the Project’s Elements section. The PCB’s gerber and drill files
can be found there too. You can use these to order a PCB from your
preferred supplier. Last but not least, you’ll find an Excel sheet there
with a very detailed Bill of Materials, especially documenting the more

Figure 2: Scope capture of ionizing radiation hitting tube and pulse shaping.

COMPONENT LIST

Resistors
R1,R2,R11,R14,R16 = 330 k
R3,R9,R13,R15 = 5.6 M
R4,R8 = 2.2 M
R5 = 10 M
R6 = 1 k
R7,R12,R18,R20,R21 = 470 Ω

Capacitors
C1,C20 = 220 µF, 6.3 V
C2,C3 = 4700 pF, 1000 V
C4 = 10 nF, 6.3 V
C5 = 100 pF, 50 V
C6,C7 = 100 pF, 1000 V
C12 = 100 nF, 50 V
C14 = 1 µF, 6.3 V
C15,C16 = 4700 pF, 1000 V
C18,C19 = 22 pF, 50 V

Inductors
L1 = 4.7 mH

Semiconductors
D1 = diode 1 A, 800 V
D2,D3,D4,D5 = Zener diode 100 V 1.5 W
D6,D7 = red LED 3 mm (Marked T1 and T2

on PCB)
Q1 = 2N3904
Q2 = MJ13003

U1 = 74HC14

Miscellaneous
GM1,GM2 = Geiger-Müller tube, e.g. SBM-20
J1,J2,J3,J4 = set of Arduino Uno shield

connectors
SPK1 = AC piezo buzzer, e.g. AC-1205G-N1LF

Figure 3: The PCB layout.

lektor embedded world Special 2022 59

All three ...PIN defines select the Arduino pin where the LED or the
speaker are connected. The LED_BLINK_MS defines the time that the
LED will stay on for each count that the tube receives.

LoRaWAN Networking
The basic sketch requires the unit to be tethered to a computer through
USB. Often it is desirable to place the sensor far from the computer,
where a USB connection is not available.

A Dragino LoRa shield can be stacked to enable LoRa connectivity.
Unfortunately, the Dragino shield also uses Arduino pin D2, so there
are two options — a single-tube option and a two-tube option.

Single-tube option: In this case, only tube GM2 can be used and pin
10 of Schmitt trigger U1 must be disconnected to prevent interference
with the LoRa communication. The pictures in Figure 6 show the full
stack with a single soviet SBM-19.

Two-tube option: In this case, both the Dragino shield and the GRAD

Elements section of the Elektor Labs
page. Every 60 seconds, the software will
output via the serial port: a comma-sep-
arated values (CSV) row with a sequen-
tial number, raw count for each tube, a
moving average of cnt1 + cnt2 and a
µSv/h dose rate based on the average count.
The following output data fragment shows
the start of a background radiation measure-
ment made in Santa Clara, CA, using GRAD
with two SBM-20 tubes.

Seq , cnt1 , cnt2 , avg10 , µSv/h
1 , 14 , 19 , 33.0 , 0.075
2 , 10 , 17 , 32.3 , 0.073
3 , 16 , 12 , 31.8 , 0.072
4 , 16 , 24 , 32.5 , 0.074
5 , 13 , 11 , 31.6 , 0.072

The graph in Figure 5 shows the complete measure-
ment over a longer period of time.

There are a few defines at the beginning that are
configurable to match the board configuration and/or
user preferences. The first set configures the Geiger-
Müller tube parameters and the moving window
size for the reporting.

#define CPM2USV 220 // tube CPM to
 // µSv/h conversion
 // factor
#define TUBES 2 // number of tubes
 // installed
#define WSIZE 10 // moving average

window (in
 // minutes)

The CPM2USV parameter is the count per minute for 1 µSv/h for your
specific tube. Unfortunately, there is no published “correct” number
for this parameter. For the SBM-20 radiation, enthusiasts on the
web use values that range from 130 to 220 (conversion factor of
0.0075 to 0.0045).

The TUBES parameter, as the name states, defines the number of
tubes installed. Valid values are 1 and 2. Finally, the WSIZE define the
moving average window size for the counts. The default value of 10
defines a 10-minute window.

The second set of parameters defines how the optional hardware
functions are connected:

#define LED1_PIN 8 // pin for TUBE1 LED
#define LED2_PIN 9 // pin for TUBE2 LED
#define SPKR_PIN 4 // pin for speaker connection
#define LED_BLINK_MS 20 // duration of LED blink for
 // each count

Figure 5: Background radiation in Santa Clara, CA.

Figure
4: The

60 embedded world Special 2022 www.elektormagazine.com

Measuring Radiation
To verify the correct function of the Geiger counter a radiation source
is required. These can be purchased online from special suppliers.
Alternatively, specific vintage items that were built using small quanti-
ties of radioactive materials can be purchased at a thrift store or Ebay.
Common radioactive items include: uranium glass items, thorium
lantern mantles and selected colors of vintage fiestaware items.

Lacking any of these, another simple way is to check the decay product
of Radon captured by the air filter from an air conditioner or an air purifier
(Figure 8). These have a relatively short half life (in the order of tens of
minutes) so make sure you run the AC for a couple of hours and then
measure the filter immediately. If the filter is fine enough to it will emit
radiations at a rate many times higher than background in your area.

board must be modified. For the Dragino shield, R5 and J_DIO0 must be
removed. A wire should be used to connect the radio DIO0 to Arduino D7.

For the GRAD board R7, R12, C20 and the two LEDs should be removed.
R21 should be replaced with a short, and a single LED should be placed
at the J9 site (replace the analog meter output).

A sketch that communicates to the The Things Network (TTN) and
posts tube counts every 60 seconds is available for download. It uses
the LMIC Arduino library to drive a Dragino LoRa shield and it will
connect to The Things Network using Over The Air Activation (OTAA).
A simple Node-RED flow is used to display the data (see Figure 7).

Figure 7: Node-Red flow and dashboard.

Figure 6: GRAD03 board, Arduino Uno and the Dragino LoRa shield combined.

lektor embedded world Special 2022 61

The chart below shows the count reaching almost ten
times the background and then following the exponen-
tial curve typical of radioactive decay.

210404-01

This article is based on the material presented on the
Elektor Labs page of this project [3]. There you’ll find
all the downloads for GRAD03, plus discussions and
remarks on this subject.

Contributors
Design: Gabriele Gorla
Text: Gabriele Gorla, Luc Lemmens
Illustrations: Gabriele Gorla, Patrick Wielders
Editors: Jens Nickel, C. J. Abate
Layout: Harmen Heida

Questions or Comments?
Do you have technical questions or comments about this article?
Email the author at gorlik@yahoo.com or Elektor at editor@elektor.com.

Figure 8: Radiation from an air conditioner filter due to radon decay.

WEB LINKS

[1] Geiger-Müller tubes: https://en.wikipedia.org/wiki/Geiger%E2%80%93M%C3%BCller_tube
[2] Theremino Geiger adapter (pls see three last designs on this page): www.theremino.com/en/technical/schematics
[3] This project on Elektor Labs: https://bit.ly/3giMntz

RELATED PRODUCTS

 > Arduino Uno SMD Rev3 (SKU 19938)
www.elektor.com/19938

 > MightyOhm Geiger Counter Kit (incl. Case) (SKU 18509)
www.elektor.com/18509

Advertisement

62 embedded world Special 2022 www.elektormagazine.com

Thermometers have long been used to monitor room temperature, and
in recent years, (e)CO2 meters have become increasingly popular for
monitoring air quality. Too much carbon dioxide (CO2) has a negative
effect on concentration, and at even higher levels it is bad for your
health. This kit measures the quality of the air in a room (how stale
the air is) as well as the temperature. It is meant as an add-on for the
Raspberry Pi, but it also can be used as a stand-alone device. The board
has a buzzer and a bar of six LEDs (two green, two orange, and two
red) that displays the air quality. Temperature and air quality readings
can be processed by a Raspberry Pi. The buzzer and LED display can
be controlled by the host.

The kit comes without printed documentation, but it provides a link to
the MonkMakes website where the datasheet and instructions can be
downloaded [1]. These documents contain all relevant information; they
help the user to connect and use the board. Example applications in
Python are available for download on Github [2].

The Hardware
Besides the six indicator LEDs and the buzzer — the big square compo-
nent in the middle of the PCB in Figure 1 — the board contains a power

review

MonkMakes
Air Quality Kit for

Raspberry Pi
Measures Temperature and eCO2

By Luc Lemmens (Elektor)

Most of us are now stuck in
(private) rooms, so modules
for measuring the air quality
cheaply are gaining popularity.
The MonkMakes Air Quality
Kit measures equivalent CO2
and temperature. It is especially
designed to be used with a
Raspberry Pi 400, but it can also be
connected to other Raspberry Pi
models using the jumper wires and
an included GPIO template.

lektor embedded world Special 2022 63

LED, a temperature sensor, an eCO2 sensor, a microcontroller and of
course a 40-pin connector that fits directly on the expansion connector of
a Raspberry Pi 400 (Figure 2). Perhaps needless to say: other Raspberry
Pi boards can not be connected directly, for that the jumper wires are
included. The four connections needed (two for the power supply, two
for the serial connection) are shown in the print on the MonkMakes
board and on the supplied template to match the corresponding pins of
the GPIO connector of the Raspberry Pi, as illustrated in Figure 3. The
power LED lights up as soon as the 3.3 V supply voltage is switched
on, and so will one of the eCO2 level LEDs.

The temperature sensor is a Texas Instruments TMP235 [3]. Its output
voltage is proportional to the temperature. For CO2 measurement,
the MonkMakes board uses a CCS811 TVOC (Total Volatile Organic
Compounds) sensor [4]. This does not actually measure the level of
CO2, but rather the level of a group of gasses called Volatile Organic
Compounds (VOCs). When indoors, the level of these gasses rises at a
rate comparable to that of CO2, and can therefore be used to estimate
the level of CO2 (called the equivalent CO2 or eCO2).

The on-board ATtiny1614 microcontroller reads both sensors and controls
the LED bar display and the buzzer. Via a serial protocol, a host system
can request sensor readings or switch the LEDs and buzzer on and off.
The kit’s datasheet documents this simple protocol, so it will not be too
difficult to write your own software to support the Air Quality Kit. As
name of this kit indicates, it is designed for Raspberry Pi, but there is
no reason why you shouldn’t use it with other boards or systems with
a 3.3 V UART.

The firmware of the ATtiny also offers an automatic mode (switched
on by default) that shows the eCO2 level on the LED bar without any
external control; all that is needed is a 3.3 V power supply. So, even
without a host system, the Air Quality kit can be used as eCO2 monitor.

Software
As mentioned earlier, MonkMakes offers downloads of some Python
example programs to control this Air Quality Kit to test and demonstrate
all its features. In the Getting Started section of the documentation, the
instructions clearly show how the software can be used on a Raspberry Pi
board to implement an eCO2-meter, an eCO2-meter with acoustic alarm
(Figure 4) and a data logger application. Looking at the examples, like
in Figure 5, you’ll notice that the ATtiny and the API completely relieve
you of retrieving and evaluating sensor data: one simple instruction
from the host (Raspberry Pi) will trigger the Air Quality board to echo
the current ambient temperature (in °C) or CO2 level (in ppm), respec-
tively. Similar commands are used to switch the buzzer on and off, and
to control the LEDs of the eCO2 bar display.

A Nice Design
Only some basic knowledge of the Raspberry Pi is required to get this
Air Quality kit working. What is a great advantage for some, will be less
attractive for others: knowledge of the sensors and control of buzzer and
LEDs is not required. The (source code of the) firmware of the on-board

Figure 2: Air Quality Kit connected to a Raspberry
Pi 400. (Source: MonkMakes)

Figure 3: Don’t plug in directly,
use the jumper wires to connect
the kit to other Raspberry Pi
models! (Source: MonkMakes)

Figure 4: Raspberry Pi screen output for one of
the examples. (Source: MonkMakes)

Figure 1: The kit contains the
board, jumper wires and a
template to locate the GPIO-
connector pins. (Source:
MonkMakes)

64 embedded world Special 2022 www.elektormagazine.com

RELATED PRODUCTS

 > MonkMakes Air Quality Kit for Raspberry Pi (SKU 19913)
www.elektor.com/19913

 > Raspberry Pi 400 – Raspberry Pi 4-based PC (US) +
FREE GPIO Header (SKU 19429)
www.elektor.com/19429

 > Raspberry Pi 4 B (1 GB RAM) (SKU 18966)
www.elektor.com/18966

WEB LINKS

[1] MonkMakes webpage with instructions: http://monkmakes.com/pi_aq
[2] Software on Github: https://github.com/monkmakes/pi_aq
[3] TMP235 datasheet: https://www.ti.com/product/TMP235
[4] CCS811 datasheet: https://www.sciosense.com/products/environmental-sensors/ccs811-gas-sensor-solution/

ATtiny1614 is not released (i.e., we don’t know what exactly happens inside
this microcontroller). However, the protocol to communicate with the
board is simple and well documented, and development of your own
applications — even for other target systems than Raspberry Pi boards
— will be relatively easy. The MonkMakes Air Quality Kit for Raspberry Pi
is a nicely designed, well-documented board that, together with the
examples, is also suitable for beginners who want to get started with
temperature and eCO2 measurements.

210681-01

Questions or Comments?
Do you have questions or comments about his article? Email
the author at luc.lemmens@elektor.com or contact Elektor at
editor@elektor.com.

Contributors
Text: Luc Lemmens
Illustrations: MonkMakes, Luc Lemmens
Editors: Jens Nickel, C. J. Abate
Layout: Harmen Heida

Sensor Characteristics
eCO2 minimum reading 400 ppm
eCO2 maximum reading 4095 ppm
eCO2 resolution 1 ppm
eCO2 accuracy unspecified
Temperature minimum reading -10 °C
Temperature max reading 100 °C
Temperature accuracy +/- 2 °C

Figure 5: Python source, showing that only simple, short instructions are
needed to communicate with the Air Quality Kit.

About CO2 Concentrations
The level of CO2 in the air we breathe has a direct influence on our
well-being. CO2 levels are of particular interest from a public health
point of view. To put it simply, they are a measure of how much we
are breathing other people’s air. We humans breathe out CO2, and if
several people are in a poorly ventilated room, the level of CO2 will
gradually increase — as well as concentration of aerosols that spread
colds, flues and Coronavirus. Another important impact of CO2 levels
is in cognitive function — how well you can concentrate and think.

The table below shows the levels at which CO2 can become unhealthy.
The CO2 readings are in ppm (parts per million).

Level of CO2

250-400 Normal concentration in ambient air.
400-1000 Concentrations typical of occupied indoor

spaces with good air exchange.
1000-2000 Complaints of drowsiness and poor air.
2000-5000 Headaches, sleepiness and stagnant, stale,

stuffy air. Poor concentration, loss of attention,
increased heart rate and slight nausea may
also be present.

5000 Workplace exposure limit in most countries.
>40000 Exposure may lead to serious oxygen

deprivation resulting in permanent brain
damage, coma, even death

Choose from our
extensive selection at
mouser.com/dev-tools

Development tools
in one location
Thousands of tools from hundreds
of trusted manufacturers

dev-tools-workbench-185x254mm-5mmbleed-en.indd 1dev-tools-workbench-185x254mm-5mmbleed-en.indd 1 27.01.22 13:0027.01.22 13:00

66 embedded world Special 2022 www.elektormagazine.com

ences with more precision than an LDR or
phototransistor can do.

Today light sensors exist that convert
brightness directly to a value in lux with
resolutions of up to 16 bits. Some of these
sensors not only measure lux, but also
UV and white light intensity. With such a
sensor, it is quite easy to build a high-pre-
cision light-controlled switch.

High-Accuracy Ambient Light
Sensor
A popular light sensor is the VEML7700
from Vishay. This is a high-accuracy
ambient light sensor with I²C interface and
it can be found mounted on a small module
for a few euros. From the same family we
might also cite the VEML6075, a UVA and
UVB light sensor also with I²C interface.

Because of its digital I²C interface the sensor
does not need an analog-to-digital converter
and can instead be connected directly to
most microcontrollers. Its output data is
available in two 16-bit registers: ambient
light (also called ‘ALS’) and white light.
White light covers a wide spectrum from
250 nm up to 950 nm. The ALS spectrum
is much narrower, from about 450 nm to
650 nm as it is optimized for human percep-

project

By Clemens Valens (Elektor)

Light-controlled switches are plentiful and retail
for €10 or so, but most of them are changing their
state somewhere in the twilight zone. Sometimes
applications require better precision and more control
than these cheap switches allow for. Do you need a lux-
accurate light control? If so, this project is for you.

Light Switch DeLux
A Solution for High-Precision Light-Controlled Switching

There exist many, many designs for light-con-
trolled switches and most of them work
great in the application they were designed
for. These applications usually consist of
switching on a light when the ambient light
level drops below a certain threshold and
switch the light off again when the light level
increases. Sometimes a timer is added too.

You might think that every possible applica-
tion is covered by these designs and yet this
is not true. The reason is that they all lack
precision. Based on an LDR or phototrans-
istor, they tend to switch somewhere in the
twilight zone. However, light levels vary
much more than that.

Brightness Is Subjective
To humans, daylight intensity or bright-
ness is fairly constant. Of course, we notice

variations due to clouds and the sun, but
we are not very sensitive to them. The
reason for this is the eye’s logarithmic
response to brightness. On a cloudy day
brightness can vary between 5,000 and
10,000 lux, yet it looks almost the same
to us. Sunlight may result in levels of over
25,000 lux, which we notice, obviously, but
we don’t experience it as three or more
times as bright.

Plants, on the other hand, are way more
sensitive to light intensity than humans.
Farmers know this, and they shine artificial
light on some of their crop even during the
day to improve its yield. On sunny days this
is usually not needed, but on cloudy days
it may help. To do this in an economical
way, they therefore need light-controlled
switches that can detect brightness differ-

Ele

kto
r lab • Elektor lab

Elektor lab • Elektor la
b

ORIGINALORIGINAL

lektor embedded world Special 2022 67

The Hard Part
Done? Not really. Now comes the hard part,
which is, of course, creating the driver for
the custom sensor. This driver must
comply to ESPHome standards for compo-
nents (a sensor is a component), meaning
that it must provide certain functions that
ESPHome expects from its components, and
it must communicate with the sensor itself.

For the second part, we can rely on Adafruit
who, besides manufacturing the VEML7700
module, also created an Arduino library for
it [5]. Our driver must provide the interface
between ESPHome and the Arduino library.

Installing a Third-Party Library
ESPHome provides a mechanism for adding
open-source community libraries: simply
add the exact (!) name of the library to the
libraries subsection in the esphome section.
In our case this is “Adafruit VEML7700
Library”. Now, when ESPHome processes
the configuration file, it will first install
the library (if it didn’t do so already, see
Figure 2) before compiling everything. In
your custom driver, you can simply include
the library as any other library.

I haven’t pushed this feature too far, so I
don’t know the criteria a third-party library
must fulfill to be used this way. You may
want to consult the platform.io documen-
tation for more details as it is the toolchain
used by ESPHome.

An Encapsulated Arduino
Sketch
Our driver is a C++ class that must provide
at least a constructor and a function named
update. We need a function setup too so
that we can initialize the Adafruit driver.
The functions setup and update of our

However, this is not a problem as ESPHome
offers a method of adding your own sensor.
Doing so involves writing some C++ code,
so it makes things a bit more involved.

As before (see [3] and [4]) we must declare
a sensor section in the ESPHome config-
uration file for this device. The sensor’s
platform now must be custom. This tells
ESPHome that you will provide all the
details for it.

Next follows a lambda section which
consists of a few lines of C++ code to tell
ESPHome to register a sensor of our own
devising (that we named veml7700). We
must also specify the data stream(s) that
our sensor produces. In this case it has
three outputs: ALS, lux and white light. The
order is important and must be respected
whenever they are referenced elsewhere
in the YAML file.

We continue with normal YAML statements
to further specify the sensor outputs. This is
done with a sensors section (plural!) where
we can specify for each data stream its
name, its units and how many decimals to
use. The order is the same as in the return
statement in the lambda section.

Only the lux stream has units (‘lx’), and
there is no point in having decimals for
any of them, so we set them to zero.

The last thing to be done is to indicate
where ESPHome can find the driver for the
custom sensor. We do this in the esphome
section at the top of the configuration file
where we add a file (veml7700.h) to the
includes subsection. On the system that
runs ESPHome, this file should be in the
same folder as the device’s YAML file.

tion. Plants are not human, so the output to
use will depend on the application.

Sensor sensitivity is important too. The
VEML7700 has a resolution of 0.005 lx
per LSB and a maximum detection level
of 167,000 lx (minimum is 0.01 lx). Such a
wide range would require 25-bit values, but
the device is only 16 bits; therefore, a sensi-
tivity value can be specified (sometimes
called ‘gain’) to bring things into range.
Its high sensitivity allows the sensor to be
used behind low transmittance (i.e., dark)
surfaces and still obtain usable results.

For low-light conditions, the sensor
features an integration setting of up to
800 ms. Finally, low and high thresholds
can be set that can trigger interrupts,
making it easy to create alarms or allow
for automatic switching.

Stick It on an ESP32
The VEML7700 module used for my exper-
iments was bought at Adafruit. A good
platform to use it with is the ESP32-Con-
nected Thermostat [1] (a.k.a. Automator,
see [2]). The module has five pins, but as
it has two power supply options, we only
need four of them. These four pins have
the same order as the OLED display connec-
tor on the thermostat, and so we can stick
the module on K9. Make sure the VIN pin
remains unconnected and the module
points upwards (as opposed to how the OLED
display would be plugged, see Figure 1).

Software With ESPHome
After connecting the sensor to the ESP32,
we must produce some software to make
it all work. As the objective is some sort
of light-controlled switch, a logical choice
would be to use a home automation
platform and my favorite is ESPHome.
Elektor has published several projects
that used ESPHome [3][4], and so you may
already know how to use and configure it,
but this project introduces a concept that
I didn’t treat before: creating a custom
sensor. If you are new to ESPHome, I recom-
mend reading and watching [3] and [4] first.

We Need a Custom Sensor
ESPHome supports many sensors, but (at
the time of writing) not the VEML7700. It
knows of other lux sensors, but not this one.

Figure 1: The 5-pin VEML7700 module plugs onto 4-way connector K9. Its VIN pin is not
connected even though it may look like it.

68 embedded world Special 2022 www.elektormagazine.com

Done
Here ends this article. If the Automator is
programmed by ESPHome with the code
described above, you will get a device that
can be controlled from a home automation
controller like Home Assistant (or by itself).
There are no automation rules inside the
ESPHome YAML file, so without a control-
ler it will just measure ambient light inten-
sities. Automation rules can be added to
the YAML file itself, or they can be created
inside e.g. Home Assistant. For a descrip-
tion of the rest of the YAML code, which is
nothing special, please refer to [3] and [4].

The YAML configuration file and C++ code
is available for download from this article’s
the webpage [7].

210190-01

Contributors
Design, Text and Photographs:
Clemens Valens
Editor: Jens Nickel, C. J. Abate
Layout: Giel Dols

Questions or Comments?
Do you have technical questions or
comments about his article? Email the
author at clemens.valens@elektor.com
or contact Elektor at editor@elektor.com.

therefore add an i2c section so ESPHome
knows that it is needed.

The ESP32 has two I²C buses with SDA
and SCL signals that may be connected
to almost any pin on the chip. ESPHome
therefore supports multiple I²C buses with
freely assignable pins, making it a matter
of specifying what goes where. But the
Arduino Wire library supports only one
I²C bus, so how do you tell it to use the bus
you want? Well, you can’t, as it will always
use the default bus. In ESPHome the default
I²C bus is the first bus specified in the i2c
section. It would have been nice to be able
to specify an I²C bus by using its ID, and
ESPHome would probably be more than
happy to let you do it, but the underlying
Arduino Wire library doesn’t allow this.

class do what would normally be done in
the functions setup and loop of a typical
Arduino sketch using the Adafruit driver.
Basically, our class encapsulates an Arduino
sketch including global variables and adds
some ESPHome-specific things to it. For
ESPHome we must insert calls to publish_
state for each data stream (ALS, lux & white
light) to the function update. This will make
the data available to the rest of the world.
The call order must be the same as in the
return statement in the lambda subsection
of the sensor section (see above).

As our class inherits from the PollingCom-
ponent class which itself inherits from the
Component class, other functions are avail-
able that you might want to use. A polling
component is a component that is called
periodically, and the call rate can be speci-
fied (e.g., in our constructor). Refer to [6]
for more details.

Adding the I²C Bus
The one thing that remains to be done
now is connecting the sensor to the I²C
bus inside the software (i.e., create a logical
connection between the two, as we already
have a physical connection). The Adafruit
library uses Arduino’s Wire library for this
purpose. In the ESPHome YAML file, we

WEB LINKS

[1] Y. Bourdon, “ESP32-Connected Thermostat,” ElektorMag 9-10/2021: www.elektormagazine.com/200497-01
[2] Elektor Automator: www.elektormagazine.com/labs/automator
[3] ESPHome starts here: www.elektormagazine.com/labs/how-to-home-assistant-esphome
[4] C. Valens, “Home Automation Made Easy,” ElektorMag 9-10/2020: www.elektormagazine.com/200019-01
[5] Adafruit VEML7700 library: https://github.com/adafruit/Adafruit_VEML7700
[6] ESPHome on GitHub: https://github.com/esphome
[7] Downloads for this article: www.elektormagazine.com/210190-01

RELATED PRODUCTS

 > ESP32 DevKitC (SKU 18701)
www.elektor.com/18701

 > 0.96“ 128×64 I2C OLED display (SKU 18747)
www.elektor.com/18747

 > Koen Vervloesem, Getting Started with ESPHome (SKU 19738)
www.elektor.com/19738

Figure 2: ESPHome installs the Adafruit library automatically.

lektor embedded world Special 2022 69

Some Results

The light sensor placed in bright summer sunlight. At noon, with sensitivity set to
0.125 and an integration time of 100 ms, the sensor reported values of around 48,000
for ALS and a bit more than 30,000 for white light. These values correspond to light
intensities of around 22,000 lx. At 10:30 AM with the same conditions, I measured
16,800 lx, a difference of 5,200 lx. However, to my eyes the brightness looked pretty
much the same in both situations.

Evolution of brightness on a sunny day in July. The “bouncing” on the left is due to
the shadow of a tree. From noon to 6 PM the brightness slowly decreases but you
wouldn’t really notice it. The dips are caused by clouds. The shadow of the house
starts to cover the sensor at 6 PM, which explains the steep fall. Then light intensity
continous to decrease until dark. For humans 5,000 lx is already bright.

On a partly cloudy day in May brightness levels may be anywhere between approx-
imately 4,000 and 27,000 lx.

All graphs were created with the help of Home Assistant at a latitude of 47°N.

5.0 mm

3.0 mm

1.55 mm

WE POWER YOUR PRODUCTS
r e c o m - p o w e r. c o m / m o b i l i t y

AUTOMOTIVE-GRADE
POWER MODULES

Smaller than an
1825 capacitor

 ∎ Wide operating temperature
from -40°C up to +125°C
AEC-Q100 Grade 1

 ∎ 36VDC Vin / 0.5 or 1.5A Iout

 ∎ Excellent performance for
automotive systems

 ∎ Optional wettable flanks for
easy optical inspection

 ∎ Adjustable output voltage

 ∎ High efficiency,
no need for heatsinks

 ∎ High power density in
compact QFN packaging

 ∎ Integrated FETs, inductors,
and passives for simple design

 ∎ Fully-protected with SCP,
OCP, OTP, and UVLO

 ∎ Simple class A or B filtering

Ad
ve

rti
se

m
en

t

70 embedded world Special 2022 www.elektormagazine.com

If you want to get a feel for the technologies behind the Internet of
Things (IoT), finding a raft of suitable projects doesn’t take long.
Just search for “IoT” and you’re preferred prototyping platform,
and you’ll be overrun with pages of projects, cloud platforms,
technology comparisons, and lists of ideas. Elektor is also a great
source of information. Since the term IoT was coined more than
20 years ago, our website has collected more than 600 articles
on or related to the topic [1].

background

The Challenges in Bringing IoT
Solutions to Market
Worries Around Security, Scalability, and Competition

By Stuart Cording (Elektor)

The Internet of Things (IoT) has been around
for more than 20 years, and a host of wireless
technologies have sprung up to support its
deployment. In the home, voice assistants
have established themselves as the primary
user interface to an array of smart devices.
Despite these advancements, more than a
third of IoT projects never make it past the
proof-of-concept phase. Furthermore, the
European Commission is concerned that
a lack of competition in some application
spaces may be hindering market entry for EU
businesses. So, what are the real challenges,
and what is it like to deploy an IoT solution
across Europe?

Figure 1: The European Commission has examined
whether the big players in voice assistants, the
favorite user interface to the smart home, are stifling
competition. (Source: ShutterStock/Gorodenkoff)

lektor embedded world Special 2022 71

Little Room for Voice Assistant Newcomers
With such powerful industry players already established on the
market, there is little room for newcomers, and the technology
curve to develop a competitive VA is significant. Thus, if you
want to leverage voice control for your IoT solution, you have to
play according to the rules set by the big three. An alternative
approach would be to license a VA. However, some manufactur-
ers questioned reported that licensing conditions were restrict-
ing their choices. These ranged from exclusivity or restrictions
to stop more than one VA being used concurrently to licensing
that forced the inclusion of other types of software or applica-
tions, meaning the VA technology couldn’t be used standalone.

Another big concern is access to data. As a third party relying
on a VA, you only have limited access to the data collected.
The VA provider has access to the audio recordings and would

also know how many failed attempts there
have been to issue the commands selected
for your device. However, your team will not
be provided access to the audio recordings,
so you’ll more likely have to wait for user
feedback to discover that your choice of
voice commands is suboptimal amongst
a group more expansive than that used
for testing. Additionally, because the VA
provider can analyze everything spoken into
it, they could conceivably use this data to
develop a solution that competes with yours
or leverage user experience provided by your
IoT solution to improve their services.

A further issue arises when the VA provider
also offers advertising services. Theoreti-
cally, the voice input provided by your users
could help the provider target advertis-

ing more accurately to the demographic represented by your
customer base.

Finally, there is the loss of brand recognition and experience.
Your carefully crafted solution is at the whims and mercies of
the VA. Should they choose to make a significant change, such
as the voice used, the wake word, or even roll-out functionality
changes that result in a drop in users, you’re inevitably going
to suffer the consequences too.

The report also examines many other relevant areas, including
application programming interfaces (API), standards, interop-
erability, the imbalance in power between many third-party IoT
device developers and the big cloud platform service providers,
and contract termination clauses.

However, there is a considerable gap between a prototyped
platform that demonstrates the core concept of an IoT solution
and deploying one for real. The IoT Insights report from Micro-
soft [2] interviewed more than 3,000 IoT professionals in 2021.
They found that 35% of IoT projects experience failure during the
trial or proof-of-concept phase, up 5% on their survey from a year
earlier. Most cited as the reason for failure at this stage is the high
cost of scaling. Other reasons include too many platforms to test,
too many use cases to prove, and a lack of resources. A separate
study by Cisco [3] reported that only 26% of companies surveyed
thought their IoT initiatives had been successful. Responses to
their study showed that, while most IoT projects look good on
paper, they proved to be more complex than initially thought.

Despite such gloomy feedback on IoT overall, there are sectors
where IoT is making huge inroads and delivering growing
revenues.

EU Commission Reviews
Consumer IoT Sector
EU citizens have welcomed the range of
consumer IoT solutions on offer in recent
years. So much so, a Smart Home revenue
report from Statista [4] predicts that related
revenues will double from around €17b in
2020 to around €38.1b in 2025. Concerned
that competition in this sector may be being
stifled, the European Commission under-
took an inquiry as part of their digital strat-
egy [5]. The report, released in January of
2022, garnered input from manufacturers
of wearable devices, connected consumer
devices used in the smart home, and those
providing services over such smart devices.
Additionally, the Commission requested input
from standard-setting organizations. However, upon reading,
many paragraphs of their analysis are given to the voice assis-
tants (VA) that form the user interface to many IoT products and
services (Figure 1).

Having analyzed the landscape of the smart home, the report
[6] makes it clear that, in Europe, Google’s Google Assistant,
Amazon’s Alexa, and Apple’s Siri are the leading general-pur-
pose VAs. Other VAs are available, but these tend to be more
limited in functionality and focus on supporting a single product
or a service provider’s app. According to ZDNet, of the solutions
from the big three players, Amazon provides the highest level of
compatibility, supporting around 7,400 brands [7]. By compar-
ison, Google supports around 1,000, while Apple remains the
most exclusive, supporting about 50.

Looking at the available
IoT landscape, it is
clear that business

opportunities abound,
regardless of whether

you are focused on
solutions for consumers

or industry.

ELEKTOR INDUSTRY

72 embedded world Special 2022 www.elektormagazine.com

LoRaWAN Under the Magnifying Glass
LoRa and LoRaWAN have been subject to particular scrutiny by
the security and hacking community. Sébastien Dudek of Trend
Micro, a company focused on IT security solutions, is one of several
researchers that has written extensively on some of the potential
issues. In a series of three technical briefs [9][10][11], he outlines
a range of issues in the implementation and potential attacks.
These range from denial of service (DoS) (Figure 2) and eaves-
dropping to bit-flipping (Figure 3) and spoofing of acknowledg-
ments (Figure 4). The outcomes of such attacks range from the
inability to communicate with nodes and reducing the battery
life to altering application data.

Many of the vulnerabilities highlighted were resolved between
version 1.0.2 and 1.1 of the LoRaWAN standard. However, further
challenges arise when operating LoRaWAN nodes with gateways
using different versions of the specification. In such cases, there is
a need to make modifications to ensure secured backward compat-
ibility between end devices and the back-end, as highlighted in
a paper from 2018 by Tahsin C. M. Dönmez [12].

Beyond hacking the wireless link, there is also the issue of bad
actors stealing and directly attacking the hardware. Sébas-
tien Dudek also examines this aspect of security. In the case of
LoRaWAN, many solutions use a microcontroller (MCU) and a
Semtech wireless module. As these are connected via SPI, data
passing between the two can be easily captured and analyzed.

Beyond this, there is also the issue of the security of the MCU
itself. One attack method simply extracts the firmware from flash

There are no recommendations in the report. However, the
conclusions state that the report’s content will contribute to
the Commission’s standardization strategy and feed into the
legislative debate on the Digital Markets Act (DMA).

Security Concerns Worry IoT Implementers
Reviewing the data collected in Microsoft’s IoT Insights report,
it is IoT security that is high on the list of worries. This issue
is of particular concern for those planning IoT solutions, with
29% indicating that the associated security risks are holding
them back from using IoT more. The report also explains that
around a third of organizations are concerned about the security
risks of IoT, especially data breaches. To combat this, outsourc-
ing is highlighted as the best way of improving peace of mind.

While many engineers know the phrase “obscurity is not
security,” few are skilled enough in this domain to ensure a
solution is protected, end-to-end, from attackers. And while
semiconductor suppliers offer a range of single-chip security
solutions, developers still need to understand how to use them
correctly to ensure that they don’t inadvertently introduce new
security weaknesses.

Over the past decades, low-power wide-area networks (LPWAN)
solutions such as LoRa and Sigfox have established themselves
as key wireless IoT technologies supporting long-range commu-
nication. Achieving ranges of tens of kilometers, they are an
alternative to cellular wireless such as LTE Cat-M1 and NB-IoT
thanks to their superior low-power performance for low data
volumes [8]. But how secure are they?

Figure 2: Researchers
discovered a Denial-of-Service
(DoS) attack in LoRa 1.0. By
replaying a previous successful
data transfer, a LoRaWAN
node is hindered from sending
further data packets. (Source:
Trend Micro)

lektor embedded world Special 2022 73

memory, allowing the code to be analyzed. If the security keys
are also in the firmware, an attacker can use them to develop
nodes that spoof authentic end devices. The recommendation
to counter this is the use of Secure Elements (SE), single-chip
authentication devices that securely store encryption keys. An
approach using Microchip’s ATECC608A [13] is one of several for
which example code is available. However, while example projects
demonstrate how to protect the cryptographic keys, the secure
boot feature of this authentication device is not used. Thus, if
the same approach were used for a product, the authentication
device could be removed and used as an SE with a different MCU
and new firmware.

Security Issues Across the Board
LoRaWAN end-devices provide only limited data bandwidth
and, as they have no IP address like a Wi-Fi module, they are
not addressable. As such, they offer minimal risk to corporate
networks. However, potential risks lie with applications based
upon such wireless technologies. These can have implications
on lives and the environment should something goes wrong.
For example, as part of a smart city network, LoRa-based sensors
may be responsible for monitoring water levels to avoid flooding.
If the data from the sensors are blocked, flood defense systems
may not respond. Conversely, false injected data could result in
flood defenses responding to an event that isn’t happening with
potentially equally disastrous consequences.

And while LoRa and LoRaWAN have been highlighted here, plenty
of researchers are examining other LPWAN technologies, includ-
ing Sigfox and NB-IoT. In a paper by Florian Laurentiu Coman et

Figure 4: Jamming the wireless link results in the LoRaWAN
node repeating the packet transfer up to seven times,
reducing battery life. If the attacker also captures and
replays acknowledgment packets (ACK), the node thinks
the link is still functional as ACK packets don’t declare the
message they are acknowledging. (Source: Trend Micro)

Figure 3: Due to the known fixed structure of
LoRaWAN data packets, it is possible to flip
bits (bit-flipping attack) in the content without
having to decrypt the message. This requires
access to the network server receiving the data.
(Source: Trend Micro)

Figure 5: DEUS POLLUTRACK particulate matter sensors gather data from
stationary and mobile IoT units. Data is delivered to the back-end using 4G
and 5G cellular networks. (Source: DEUS POLLUTRACK)

74 embedded world Special 2022 www.elektormagazine.com

the delivery vans of DPD, that are already frequently underway
in the target city. These sensors recalibrate themselves against
data acquired by the stationary sensors they pass to ensure the
accuracy required based. All this requires a robust, reliable, and
secure LPWAN choice.

Talking to co-founder Marc Nodorft, he explains that both Sigfox
and LoRaWAN were considered during the early development
stages. Sigfox offered connectivity infrastructure, simplifying
system deployment, but neither provided the data throughput
required. LoRaWAN, at the time, wasn’t secure enough out-of-the-
box and, without infrastructure partners in the cities where the
technology was to be deployed, it would be necessary to deploy
gateways that connected to the back-end via cellular networks.
As a result, 4G and, later, 5G cellular were selected, resolving the
issues of coverage, reliability, and security to the levels required.

Nodorft also tells us that, while there are plenty of cheap electronic
solutions for IoT available, these are not robust enough for
long-term deployment in the environments where their products
are installed. Hence the choice was made to develop according to
industrial standards, another consideration for those planning
their own IoT products.

Another aspect is the back-end operations, which they have
developed specifically to the needs of their IoT implemen-
tation (Figure 6). Moving forward, there is a need to support
open-source reporting dashboards to allow government bodies
using the system and citizens to access the data, which requires

al. [14], several proof-of-concept attacks on wireless networks in
addition to LoRaWAN are described. In a technical brief issued by
Deutsch Telekom [15] it was stated that implementing Sigfox and
LoRaWAN “without [an SE] can [even make] end-to-end encryp-
tion useless.” It explains that, by contrast, NB-IoT benefits from
long-proven LTE security features, such as authentication and
secure key generation and exchange. However, it also makes clear
that end-to-end encryption is not standard and, if deemed neces-
sary, must be discussed with the network operator.

Delivering City-Wide IoT Solutions
Concerns regarding security in LPWAN networks influenced
technology choices made by DEUS POLLUTRACK Smart City
GmbH i.G. for their IoT platform [16]. Their team has been devel-
oping IoT sensor networks to monitor particulate matter in cities
for more than a decade. With the technology deployed in more
than 15 European cities, it enables local leaders of municipalities
to make informed environmental decisions regarding air pollu-
tion. Their patented optical particle counters (OPC) are capable
of monitoring down to the ultrafine particle (UFP) classification
(under 0.1 μm). While larger particulates, such as PM10 are consid-
ered dangerous for the lungs, UFPs can enter the bloodstream
and pass to other organs through inhaled air.

DEUS’s sensor technology (Figure 5) uses a combination of
stationary and mobile sensors, networked to back-end dashboards
that visualize the data collected. Cities such as Marseille and Paris
use 40 stationary sensors complemented by 300 mobile sensors
[17]. Mobile sensors are fitted to vehicles of partners, such as

Figure 6: A cloud-based dashboard shows the level of airborne pollutants, as shown here for the German city of Hamburg. Local authorities use
such data to make decisions on transportation solutions. (Source: DEUS POLLUTRACK)

lektor embedded world Special 2022 75

relationships if they go it alone. Without a doubt, expertise, either
hired or loaned, is essential to move beyond example applications,
demonstration dashboards, and test IoT services. Finally, it is vital
to fix your vision while remaining agile in all areas of implemen-
tation, from technology choices to target market, to fulfill it.

 220053-01

Contributors
Text: Stuart Cording
Editors: Jens Nickel, C. J. Abate
Layout: Harmen Heida

Questions or Comments?
Do you have technical questions or comments about this article?
Email the author at stuart.cording@elektor.com or contact Elektor
at editor@elektor.com.

a cloud services provider. And, while there are plenty of choices,
the provider is considered as important as the technical solution.
Thus, the search is on for a provider that can provide personal
support and not just an impersonal customer service chatbot.

With so much experience in significant IoT deployments and
learning much about the technical challenges, I wondered what
other advice Nodorft could offer those seeking to implement IoT
solutions. “We’ve always stayed true to our vision,” he replies,
“which has often required us to change the approach.” This has
meant evaluating different technologies, working with different
partners, and modifying the sales strategy on their road to success.

Teams of Experts and Partnerships Required
Looking at the available IoT landscape, it is clear that business
opportunities abound, regardless of whether you are focused
on solutions for consumers or industry. However, the journey
from concept to deployment is fraught with challenges. While
embedded systems developers may be well versed in hardware and
firmware development, and may even have experience in wireless
technologies, IoT and its security and scalability challenges may
be too much for an organization to tackle alone.

According to the European Commission’s report, large organiza-
tions also have the upper hand in business relationships when
it comes to services and platforms. Small players and startups
will struggle to get the support they need in these asymmetrical

WEB LINKS

[1] Elektor IoT Articles: www.elektormagazine.com/select/internet-of-things-IoT
[2] “IoT Insights, Edition 3,” Microsoft/Hypothesis, October 2021: https://bit.ly/3rxMk3a
[3] “The Journey to IoT Value,” Cisco, May 2017: https://bit.ly/3GzdJWS
[4] Dr. J. Lasquety-Reyes, “Smart Home - revenue forecast in Europe from 2017 to 2025,” Statista, June 2021: https://bit.ly/3LlGiuG
[5] “Sector inquiry into the Consumer Internet of Things,” European Commission, January 2022: https://bit.ly/3Lgw9iE
[6] “Final report - sector inquiry into consumer Internet of Things,” European Commission, January 2022: https://bit.ly/3B2Htu9
[7] “The best voice assistant,” ZDNet, September 2021: https://zd.net/3rxf6Rt
[8] L. Tan, “Comparison of LoRa and NBIoT in Terms of Power Consumption,” KTH Royal Institute of Technology, January 2020:

https://bit.ly/3JafsUb
[9] S. Dudek, “Low Powered and High Risk: Possible Attacks on LoRaWAN Devices,” Trend Micro, January 2021:

https://bit.ly/3rA02Tg
[10] S. Dudek, “Gauging LoRaWAN Communication Security with LoraPWN,” Trend Micro, February 2021: https://bit.ly/3LhV0T5
[11] S. Dudek, “Protecting LoRaWAN Hardware from Attacks in the Wild,” Trend Micro, March 2021: https://bit.ly/3rxquge
[12] T.C.M. Dönmez, “Security of LoRaWAN v1.1 in Backward Compatibility Scenarios,” Elsevier, 2018: https://bit.ly/3GtzKq0
[13] Microchip Product Page - ATECC608A: https://bit.ly/3B7zIms
[14] F.L. Coman et al., “Security issues in internet of things: Vulnerability analysis of LoRaWAN, sigfox and NB-IoT,” IEEE, June 2019:

https://bit.ly/3uwhUQX
[15] “NB-IoT, LoRaWAN, Sigfox: An up-to-date comparison,” Deutsche Telekom AG, April 2021: https://bit.ly/3uyUydj
[16] DEUS Pollutrack Website: https://bit.ly/3sHL9O5
[17] DEUS Sensor Measurement Network: https://bit.ly/3Gzjbcc

ELEKTOR INDUSTRY

76 embedded world Special 2022 www.elektormagazine.com Partner Content

Electronic components are getting smaller
and smaller. Several inter-related factors
explain this trend. The pressure is on
end-product manufacturers to make
their products smaller yet increase their
capabilities and functionality. To achieve
that, component manufacturers need to
keep innovating their technologies to fit
into a smaller space. Technology research
and development makes this possible; an
excellent example is how semiconduc-
tors continue to pack billions of transis-
tors into an ever-decreasing footprint. But
semiconductors are not the only electronic
component that needs to get smaller. Today,
most electronics-based end products may
only contain less than five semiconductors,
even though their capabilities have hugely
increased. However, supporting and equally
essential components, such as passives
(inductors, capacitors, and resistors), are
required in the hundreds.

Component miniaturisation requirements
are not limited to just electronic compo-
nents. Factory floor space is at a premium
in the industrial domain, and the space
available for each production asset, sensor
and actuator are limited. Consequently, the
next generation of each asset needs to be
smaller and provide more functionality.

Component Miniaturisation
Strives Forward
Change is constant in the electronics indus-
try. Since the birth of the transistor in the
late 1940s, researchers embarked on an
evolutionary journey that would focus on
miniaturisation. A decade later, the first

integrated circuit (IC) containing four
transistors was developed by Robert Noyce
at Fairchild Semiconductor. Fast forward
to today, and you’ll find tens of billions of
transistors in leading-edge processors. The
process of fabricating semiconductors in
an increasingly smaller area has advanced
significantly. However, the advancements
in component design and manufacture
have also benefitted the broader electro-
nics industry.

The Impact of Technology
Advancements for Electronic
Components
The first transistor prototype was a large
item compared to today’s devices. However,
it was significantly smaller than the legacy
technology of that era: thermionic valves.
Not only was the transistor more diminu-
tive, but its supply voltage arrangement
was less complex than used on valves. Also,
without the need for a heater element, the
circuit ran cool. At an early stage, engineers
could see the potential of what the integra-
tion of transistors into an IC could achieve.
The journey to increase the capabilities of
an IC while reducing the physical footprint
had started. Gordon Moore, the co-founder
of Intel, famously forecast his ‘Moore’s Law’,
that the ‘number of transistors incorporated
into an IC would double every two years’.

The research and development into
semiconductor IC design and develop-
ment continues to lead the electronics
industry today. Making electronic compo-
nents smaller challenges the automated
production equipment manufacturers to

accommodate smaller sizes. The physical
dimensions now involved are staggering.
For example, an advanced semiconductor
process node size is currently 5 nm. This
dimension doesn’t relate to the actual
transistor size but is used by semiconduc-
tor manufacturers to indicate the transistor
density. Many smartphones use ICs based
on the 5 nm process, and the computation
power of its 30 billion transistors enables
the phone’s operation and all our popular
apps.

Transistors and semiconductor ICs are
packaged according to standard surface
mount (SMT) packaging specifica-
tions managed by the JEDEC Solid State
Technology Association. The same is true
for surface-mounted passive components
such as capacitors, resistors, and inductors.
As semiconductors shrink and their capabi-
lities increase, the need for their suppor-
ting passive components to reduce in size
is paramount. Take a look at any embedded
system design today, and you’ll spot just a
couple of complex ICs. However, there will
be many hundreds of passive components
placed around the ICs that are fundamental
to their operation.

An example transistor package format
is SOT23-3 (Small Outline Transistor).
Typically used for small signal general-pur-
pose transistors, it has three terminals and
measures 3 mm x 1.75 mm x 1.3 mm. Some
ICs also use the SOT-23 package, the ‘-x’
indicating the number of pins used. For
example, a SOT23-6 denotes an IC with
six pins.

Miniaturisation of
Electronic Components and
Industrial Sensors
By Richard Woodward, Distrelec

background

lektor embedded world Special 2022 77Partner Content

manufacturers to incorporate more
advanced features into their end-pro-
ducts while also reducing their footprint.
Whether designing an IIoT sensor or an
industrial programmable logic controller,
you can realise space savings within the
product enclosure. Miniaturisation allows
for the design of more stylish and space-ef-
ficient products. It also opens up the oppor-
tunity to increase the features and functio-
nality of new products without increasing
their dimensions.

For further information visit
www.distrelec.com.

220286-01

About Distrelec
Headquartered in Manchester (UK) and
Nänikon (CH), the Distrelec Group is a
leading online distributor of electronic
and technical components in the B2B
sector with around 500 employees. In
addition to its main sales markets of
Switzerland and Sweden, the company
has a strong market position in a total
of 17 European countries. Its product
portfolio is particularly characterised by
a strong focus on MRO components as
well as a range geared towards at B2B
customers.

Component Miniaturisation in
the Industrial Domain
End-product manufacturers are keen
to take advantage of the continual size
reduction of electronic components. The
industrial sector, in particular, has seen the
degree of automation used increase signi-
ficantly over the last decade. Industrial
efficiency improvement initiatives,
such as Industry 4.0 and the Industrial
Internet of Things (IIoT), are responsible
for the increasing deployment of electro-
nics-based sensors, control equipment,
and AI machine learning systems. This
increase in automation equipment is set
against the backdrop of available factory
space at a premium, driving demand for
compact, energy-efficient, and leading-edge
component technologies.

The drive to component miniaturisation
is not limited to electronic components.
Manufacturers of automation equipment
and sub-assemblies have also been innova-
ting. Advances in 3D printing, material
technology research and a deeper unders-
tanding of finite element analysis in mecha-
nical design contribute to weight, size, and
cost reductions.

The Benefits of Component
Miniaturisation
The ongoing trend of component
miniaturisation enables designers and

Integrated circuits have a wide variety of
different package configurations, some
leaded, others not. Either way, they all are
surface mounted. Some sensors, such as
micro-electromechanical systems (MEMS),
are constructed in popular semiconductor
packages.

Examples include:

 > SSOP (Shrink Small Outline Package)

— leaded — with a pin pitch of
0.635 mm

 > TSSOP (Thin Shrink Small Outline
Package) — leaded — this has a pin
pitch of 0.65 mm

 > QFN (Quad Flat Non-leaded) package
— this is available in a variety of diffe-
rent electrode (pin) connections (from
14 to 100) and various pitch widths
(0.5 mm – 1.65 mm)

The majority of surface-mounted
“chip” passive components use the EIA
codes to denote component size. Popular
examples sizes include:

 > 0805, measuring 2.0 mm x 1.30 mm

(0.08 inches x 0.05 inches)
 > 0603, measuring 1.5 mm x 0.80 mm

(0.06 inches x 0.03 inches)
 > 0402, measuring 1.0 mm x 0.50 mm

(0.04 inches x 0.02 inches)

Partner Content78 embedded world Special 2022 www.elektormagazine.com

By Dr. Heinz Zenkner (Freelance
Consultant at Würth Elektronik)

Wireless networks are
becoming increasingly
popular, especially in
industrial applications.
However, there is a strong
case for robust cabling via
Ethernet in many cases
as the more reliable and
secure option. This article
demonstrates how to
easily implement a 1 Gbit/s
interface.

Industrial wireless sensor networks can
be established using smart sensors and
meters that use efficient modulation and
coding techniques with good propaga-
tion characteristics and low bandwidths.
However, the majority of the use cases
explored are limited to low throughput
applications. For these use cases the actual
throughput is often no more than 1 Mbit/s.

There are no definitive boundaries in
a wireless network. For example, even
minor adjustments to the access point’s
antenna positioning can have a significant
effect on the signal strength at the other
stations. The signal is attenuated by walls,
ceilings, and floors, and reflected by metal-
lic objects. While a station may be able to
receive the signal from an access point,
the access point in turn may not be able

to receive the station’s signal. In addition,
there is a possibility that the network
could be accessed from the outside or that
the wireless signal transmission could be
interfered with.

As a result, wireless data transmission is
intrinsically less reliable than transfers
through a wired network. Thus, particu-
larly in industrial settings, there may be
instances where a wired Ethernet network
is the only viable solution.

Wired Ethernet Network
Similar to wireless networks, wired
networks work by exchanging Ethernet
frames between endpoints. There are
a few rules to follow when setting up a
network to avoid problems. The most
common cause of network problems is

Preferably Wired
After All

background

Tips for Developing
a 1 Gbit/s Interface
in an Industrial
Environment

Partner Content lektor embedded world Special 2022 79

former) is the device-to-Ethernet cable
interface. The transformer provides the
necessary galvanic isolation between the
device and the cable while at the same
time matching the impedance of internal
logic and the balanced wire pairs. Further-
more, the transformer protects the device
from transient interference and suppresses
common mode signals between the trans-
ceiver IC and the cable, both within the
device and between the external cable
and the device’s electronics. However, the
device must also be capable of transmit-
ting data at a rate of up to 1 Gbit/s without
significantly degrading the transmit and
receive signals. Additional components
are needed to meet the matching and
electromagnetic compatibility (EMC)
criteria.

Figure 2 depicts a circuit diagram of
the Gigabit Ethernet interface using
discrete components. The LAN trans-
former provides DC isolation between
the electronics and the network cable. The
primary-side winding’s middle tap depicts
the so-called “Bob Smith” termination.

a bandwidth of 62.5 MHz per channel
(2 bits per symbol). The signal voltage at
1000BASE-T (GB Ethernet) is typically
750 mV differential, for the limits 820 mV
> VSignal > 670 mV at a load of 100 Ω.

1 Gbit/s Ethernet Front-End
A typical front-end for Ethernet is
equipped with an RJ45 port. These are
intended for full-duplex transmissions,
i.e. simultaneous transmission of send
and receive data. This is possible because
the connector contains two pairs of wires,
one in each direction (differential voltage
principle). The IEEE standard specifies
galvanic separation via a transformer for
each RJ45 connection. This transformer
protects the devices from damage caused
by the line’s high voltage and prevents
voltage offsets caused by potential varia-
tions between the devices. The circuit
diagram for a Gigabit Ethernet interface
is shown in Figure 1.

Discrete Circuitry of the
Gigabit Ethernet Interface
The Ethernet transformer (LAN trans-

rule breaches. For example, in Ethernet,
wire length must not be arbitrary. When
cascading, i.e., connecting hubs in series,
an arbitrary number of hubs is not permit-
ted, and an unfavorable network configu-
ration can also lead to errors or add unnec-
essary loads on the network. However,
depending on the cable quality and the
performance of the hardware, the expected
data rates are often not achievable.

Currently, 100Base-TX (100 Mbit/s Fast
Ethernet), Gigabit Ethernet (1 Gbit/s),
10 Gigabit Ethernet (10 Gbit/s) and 100
Gigabit Ethernet (100 Gbit/s) are available.
For most applications, Gigabit Ethernet
works well with regular Ethernet cables,
specifically CAT5e and CAT6 cabling
standards. These cable types adhere to the
1000BASE-T wiring standard, alternatively
referred to as IEEE 802.3ab.

The 1 GB Ethernet interface conforms
to the 802.3ab-1999 (CL40) standard
and requires four wire pairs/channels
for signal transmission. This results in a
symbol rate of 125 Megabaud (MBd) and

Figure 1: Basic circuit of a Gigabit Ethernet interface. Representation of a transmission channel with a total of four channels.
(Source: Würth Elektronik)

Partner Content80 embedded world Special 2022 www.elektormagazine.com

Here, one 75-Ω resistor is connected to
each wire pair to form a “star point”, which
is then galvanically isolated and connected
to the housing ground via two parallel
100-pF/2-kV capacitors. The additional
common-mode chokes integrated in
module X3 mitigate interference that is
coupled both capacitively and inductively
via the long Ethernet cables and could
potentially impair Ethernet data commu-
nication as common-mode interference.

In Figure 2, R9, R10 and C52 are used
to power the LEDs that are typically
integrated in the connector socket.
Through the capacitors C36 to C38 and
C41 to C43, the shielding of the Ether-
net socket can be connected to the board
ground (GND). For sheet metal housings,
it makes sense to omit these capacitors
and connect the electronics’ ground (GND)
directly to the housing via screw connec-
tions. For plastic housings the capacitors
should be fitted to connect the shield of
the Ethernet cable to the reference ground.
The 0-Ω resistors R19 and R20 have the
same purpose. However, unlike with capac-
itors, there is no galvanic separation here.
Alternative configurations were included
in this section for “experimental” purposes
to compare the shielding quality of various
Ethernet cables. The capacitors C32 to C35
on the secondary side of the transformers
connect the center taps of these in an RF
manner to ground (GND). Galvanic isola-
tion via capacitors is essential to eliminate
DC equalization currents from the PHY.
The resistors R27 to R30 are included to
comply with some PHY manufacturers
requirements (Current Mode Line Driver
- Option) but are typically not needed if
the PHY operates in “Standard Voltage
Mode”. However, the TVS diode arrays
D6 and D7 are indispensable because
they isolate transient interferences on the
interface side of the PHY from the circuit
ground (GND). On the secondary side, i.e.
after the transformers of the X3 module,
transient disturbances occur in common
mode, and therefore a TVS diode must be
connected to each terminal of the trans-
formers against the reference ground.
The secondary side of the transformer,

Figure 2: A Gigabit Ethernet interface’s discrete circuit. Module X3 contains the LAN
transformers and common-mode chokes necessary to prevent interference.

Partner Content lektor embedded world Special 2022 81

ble circuit and layout design, a system-de-
pendent ground concept, and the right
choice of components. Only when all these
factors are taken into account a product
that functions reliably and meets stringent

WEB LINKS

[1] Würth Elektronik Application Guide: https://www.we-online.com/applicationguide/en

however, has lower interference levels than
the primary side. Important for the TVS
diodes to function properly is a low-im-
pedance connection of the diodes, on the
one hand looped into the signal lines and
on the other hand to ground.

Figure 3 illustrates the layout of all four
layers of the board starting with the Ether-
net interface area. The package/socket
ground is isolated from the electronics
GND in all four layers. Thus, the package
ground’s surfaces do not overlap with those
of other layers to keep capacitive coupling
as low as possible. The ground planes
were plated through every 4 mm in a grid
pattern. The Ethernet socket’s signal lines
are balanced, with a differential impedance
of 100 Ω routed to the reference ground.
The conductor pairs have a track width
of 0.154 mm and are spaced 0.125 mm
apart. The Ethernet socket is positioned
on the PCB’s edge to ensure a low-imped-
ance connection to a metal enclosure if
necessary.

The transformer module (X3) is placed
nearby to minimize the effects of electri-
cal coupling, or interference from long
traces. As with the primary side, the
secondary side of the transformer module
must maintain a differential impedance
of 100 Ω to the reference ground for the
conductor paths. To avoid voltage drop
due to parasitic inductance, the TVS arrays
must be connected directly into the signal
path and to GND.

EMC Compliance
In terms of electromagnetic compatibility
(EMC), the board complies with industry
standards for immunity (EN61000-6-2)
and EN55032 Class B radio interference
emission levels for multimedia equip-
ment. Numerous factors must be consid-
ered when designing a 1 Gbit/s Ethernet
interface. These include an RF-compati-

Figure 3: The layout of all four board layers of the Ethernet interface area.

About the Author
Dr.-Ing. Heinz Zenkner is a freelance consultant at Würth Elektronik in
the areas of technical marketing and application engineering as well
as a lecturer at the technical academy in the area of EMC. At the same
time, Heinz is a publicly appointed and sworn EMC expert. He has
authored numerous technical journals and books, and has worked as
a lecturer at various universities, the IHK and at numerous seminars.

requirements can be developed. Further
information on these topics, as well as
on other interface standards, is available
in various app notes published by Würth
Elektronik at [1].

220182-01

Partner Content82 embedded world Special 2022 www.elektormagazine.com

In recent years, there have been some
amazing developments in computer
vision, fueling progress in things like
self-driving cars and biometric immigra-
tion gates (very useful if, like me, you travel
a lot!). But these use cases are incredibly
computationally expensive, requiring
costly GPUs or special accelerators to run.

The awesome thing is that not all comput-
er-vision tasks require such intensive
compute. Any yes/no question (“Do I
see an elephant?,” “Is this label properly
attached to the bottle?”) can add tremen-
dous value to constrained embedded
devices. What’s more, these problems of
image classification can even be solved by
today’s microcontrollers.

Imagine if we could add even more
advanced vision capabilities to every
embedded device!

Say Hello to FOMO
We’re making it a reality. We developed
a novel neural network architecture for
object detection called Faster Objects, More
Objects, or FOMO (Figure 1). It’s designed
from the ground up to run in real-time on
microcontrollers, so embedded engineers
can (ahem) avoid the fear of missing out
when it comes to computer vision.

Fast, Lean & Flexible
FOMO is capable of running on a 32-bit MCU,
like an Arm Cortex-M7, with a frame rate of
30 frames per second. And the next time you
choose a Raspberry Pi 4 type device, you’ll be
able to do object detection at a rate of about
60 frames a second. That’s roughly 30 times
faster than MobileNet SSD or YOLOv5.

background

Bringing Real-Time
Object Detection

to MCUs with Edge Impulse FOMO

Figure 1: FOMO classification within Edge
Impulse Studio.

By Jan Jongboom, Edge Impulse

We humans rely heavily on sight to perform
many daily tasks, from some of the most basic
to the most complex. With one look, we know if
there are people in the room with us, if there’s
an elephant nearby, or how many free parking
spaces are available. Despite the importance of
vision, though, many embedded devices still
can’t perceive things visually. Wouldn’t it be
amazing if we could teach all our devices to see
the world the way we do?

Partner Content lektor embedded world Special 2022 83

had to deal with when it came to computer
vision (Figure 4).

To learn more about FOMO and exper-
iment with your own algorithm, visit
edgeimpulse.com/fomo.

220207-01

About the Author
Jan Jongboom is an

embedded engineer
and machine
learning advocate,
always looking for

ways to gather more
intelligence from the real

world. He has shipped devices, worked
on the latest network tech, simulated
microcontrollers and there’s even a
monument in San Francisco with his
name on it. Currently he serves as the
cofounder and CTO of Edge Impulse,
the leading development platform
for embedded machine learning with
80,000+ projects.

small objects very effectively (Figure 3).
That’s something that MobileNet SSD and
YOLOv5, despite being larger and more
capable models, can’t do very well.

No More Missing Out
FOMO is available today, runs on a wide
variety of computing platforms, and is
compatible with Linux systems, Cortex-M
microcontrollers, and specialized DSPs.
Add a camera and Edge Impulse, and you’re
all set.

With FOMO, you can quickly add object
detection to just about any camera-based
device, and avoid the fear of missing out
that, until now, embedded engineers have

FOMO scales down to about 100 kilobytes
in RAM, making it possible to run object
detection in real-time on everything
from highly-constrained Arm Cortex-M4
cores to more powerful ones, like the
Cortex-M7 cores on the Arduino Portenta
H7 (Figure 2), the new Arduino Nicla Vision
(another dual Arm Cortex-M7/M4 CPU), or
even specialized DSPs such as the Himax
WE-I.

FOMO can scale from the tiniest micro-
controllers all the way to full gateways or
GPUs. This high degree of flexibility also
makes FOMO useful when fault detection
requires identifying variations that are very,
very small within an image.

In an MCU with strictly limited compute
and memory capacity, it’s best to use an
image size of about 96x96 pixels. But with
a larger microcontroller device, 160x160
pixels is probably fine. The important
thing is that FOMO is fully convolutional,
so it works on any arbitrary input size. If
you need higher granularity, more detail,
or more objects, you can just scale up the
input resolution.

It Sees the Little Stuff
As long as the objects in the frame are of
similar size and don’t overlap, this new archi-
tecture can even spot and count lots of very

Figure 2: Run object detection on a wide variety of dev boards, including
the Arduino Portenta.

Figure 3: Here’s a former iteration of the FOMO approach used to count
individual bees.

Figure 4: Training on the centroids of beer
bottles. On top the source labels, at the bottom
the inference result.

84 embedded world Special 2022 www.elektormagazine.com

By Neil Gruending

The world of RF amplifiers
is fascinating because of
the wide range of methods
in use. Today, many are
constructed from solid-
state components, but there
are still situations where
vacuum tubes are the only
suitable choice. We’ve
looked at klystrons in the
past, so, this time, let’s look
at the traveling-wave tube
amplifier, another unsung
electronic hero.

One of the most fascinating things about
traveling-wave tube amplifiers is how they
work. They feature a heater, cathode, and
acceleration electrodes to form an electron
gun, much like a cathode-ray tube, that
beams a stream of electrons to the collec-
tor (Figure 1). This stream is focused by an
external magnetic field that is usually made
of permanent magnets. Using velocity
modulation, which mixes the electron
stream with the incoming RF electrons, the
tube amplifies the applied RF input signal.

Since the streaming electrons travel much
more slowly than the RF electrons, the RF
signal is fed through a spiral wound wire,
called the helix. This slows the RF signal
down to match that of the electron stream.

As the RF electrons proceed down the helix,
they modulate the velocity of the electrons
in the stream because the in-phase
electrons speed up, and the out-of-phase
electrons slow down. These modulated
electrons then bunch together, inducing
an amplified signal back into the helix that
is then picked off the end of the helix using
a directional coupler.

When compared to klystrons [1], travel-
ing-wave tubes have the advantage of
wider bandwidths. Additionally, they don’t
require resonant components, making
them ideal for lower power microwave
applications like radar or even spacecraft
and satellites. A great example is the
Collins Radio S-Band amplifier (Figure 2
and Figure 3) used in the Apollo space
program [2]. It was a compact, 32-pound,
20-W amplifier that transmitted all of the
voice, data, and television back to NASA’s
network of 26-m, earth-based dish anten-
nas. By comparison, the ground station
used a focused 10,000-W signal to commu-
nicate back to the craft.

Even though traveling-wave tubes are
mostly the domain of commercial applica-

tions, a small group of enthusiasts still like
experimenting with these wonderful little
amplifiers in amateur microwave transmit-
ters [3]. Their biggest challenge, however,
is finding the tubes!

210418-01

Questions or Comments?
Do you have technical questions or
comments about this article? Email Elektor
at editor@elektor.com.

background

WEB LINKS

[1] N. Gruending, “Klystrons, Weird Component # 12,” Elektor 3/2015: https://bit.ly/2UW4k9G
[2] K. Shirriff, “Inside a 20-Watt Traveling-Wave Tube Amplifier from Apollo,” Ken Shirriff ’s Blog, July 2021: https://bit.ly/3ea8lOn
[3] H. Griffiths, “Travelling Wave Tube Amplifiers,” The National Valve Museum, September 1980: https://bit.ly/3wA8aCn

HEATER
CATHODE

ELECTRODES

DRIFT
TUBE

INPUT
ANTENNA HELIX ATTENUATOR

PERMANENT
MAGNETS

OUTPUT
ANTENNA

COLLECTOR

TO HEATER
CATHODE
VOLTAGE

TO ELECTRODE
VOLTAGES

TO HELIX
VOLTAGE

INPUT
WINDOW

OUTPUT
WINDOW

TO COLLECTOR
VOLTAGE

TO R-F
INPUT

TO R-F
OUTPUT

N

N

S

S

1 2

Figure 1: Basic design of a traveling-wave tube.

Figure 2: Collins Radio S-Band traveling-wave
tube amplifier used for communication with
earth during the Apollo mission.
(Source: Ken Shirriff)

Figure 3: Operating at several thousand volts,
the Collins Radio amplifier was a tightly-packed
tangle of coaxial cables. (Source: Ken Shirriff)

Traveling
Wave
Tubes
Peculiar Parts,
the Series

lektor embedded world Special 2022 85

Along with LoRa and Sigfox, mobile communication networks
are also a good option for the transmission of IoT sensor data. The
upgrade from EDGE to UMTS made this option even more attrac-
tive, since using a faster transmission system can in the end be
better than using a lower-power but slower system. However, the
immense bandwidth and power hunger of 4G/LTE make this rule
of thumb a bit less relevant. The power consumption of the trans-
mitters is significantly higher, and on top of that the modules are
more expensive. Nevertheless, it can be worthwhile.

In the framework of the specification 3GPP Release 13, desig-
nated by LTE as ‘informational’, the GSM Association defines
two systems for the Internet of Things. The first is Narrowband
Internet of Things (NB-IoT), and the second is LTE-M, also known
as LTE Cat-M1 or eMTC.

LTE-M is basically a ‘light’ version of LTE (4G) with a bandwidth
of 1.4 MHz, while NB-IoT is a dedicated wireless communication
standard for the Internet of Things. The key difference is that LTE-M
additionally supports voice transmission with VoLTE, while an
NB-IoT system exclusively transmits data messages.

The NB-IoT channels, each with a width of only 180 kHz, use a
subset of the methods implemented in the full version of LTE.
Uplink uses a simple version of the frequency division multiple
access (FDMA) method, while downlink uses orthogonal FDMA
(OFDMA). The quadrature phase shift keying (QPSK) modulation
method does not require especially complex hardware in terms
of processing power.

However, it should be noted that introducing NB-IoT usually incurs

Narrowband
Internet of Things

By Tam Hanna (Slovakia)

Curious about Narrowband
Internet of Things (NB-IoT)?
Is it for you? Let’s take a look.

background

Standards, Coverage,
Agreements and
Modules

source: shutterstock.com

86 embedded world Special 2022 www.elektormagazine.com

Verizon, the natural question here is which bands are used. Band 13,
which is only important for North America, has caused problems
for many Asian or European module providers. Table 1 is taken
from the Deployment Guide [3] of the GSM Association. You should
make sure that the module you choose supports all the bands that
are used by your preferred carrier.

Availability and Agreements
It goes without saying that wireless communication standards are
only worthwhile if they are also available in practice. In the case of
the two IoT wireless communication standards, you should have a
look at the interactive world map of the GSM Association in Figure 1
[3] (status as of September 2021). As you can see, Mexico is the only
country where only CAT-M is available (probably because of the larger
range), while “NB-IoT only” is more widely available in the rural areas
of Asian countries and, remarkably enough, in Eastern Europe. In
the highly industrialised regions of Europe, North America, Asia,
Australia and Oceania, both versions are available.

CAT-M agreements are generally ordinary agreements in which
the total usage volume and the number of SIM cards determine the
overall cost. For the sake of completeness, it should be noted that
with regard to cost, an IoT provider such as PodGroup is often a
better choice than a prepaid SIM card purchased on the open market.

The claim that NB-IoT is not subject to duty cycle restrictions is
not borne out by the author’s practical experience as a consultant.
Talking with your mobile provider about IoT connectivity is and
will remain a matter of negotiation, and all too often limits on
the number of packets in a given time interval will be imposed.
Operators rarely publish their exact conditions in this regard, which
makes the following statement from T-Mobile USA all the more
remarkable:

“Join the first nationwide NB-IoT network to power asset tracking,
connected cities, and more. Limited time offer; subject to change.
Taxes and fees may be additional. Plan includes 10 single-packet
transactions per hour at up to 64 Kbps, up to 12 MB. Full service
payment due at activation.”[4]

Interestingly, this is only an individual opinion, and Hutchison
Holding Ltd has confirmed that the total volume of data traffic
(within the bounds of the agreed amount) can be used up in one
day. Tom Tesch, the Austrian spokesperson of Hutchinson, says
in this regard:

“The data rate of NB-IoT — in accordance with the standard — is
very low and primarily suitable for the transmission of individ-
ual measurements or status values. For this reason, more than 5
to 10 MB per month is very rarely needed for NB-IoT devices. For
more bandwidth-intensive applications, such as the transmis-
sion of photos or videos, 3G/4G and of course 5G are more suitable
technologies. There are currently no limits on when the volume
can or may be used, which means that the entire volume can also
be used up in one day.”

additional costs for the carrier for the new hardware. Due to the
extremely narrow bandwidth, NB-IoT can easily fit into the guard
band surrounding the LTE frequency packets. On the other hand,
using NB-IoT in stand-alone mode is of course also possible.

Looking at Performance
Even the technically most attractive wireless communication
standard is of no use if the transmission capability is insufficient for
the intended task. In the case of NB-IoT, the version is an important
consideration because there are differences between LTE Cat NB1
(Release 13) and LTE Cat NB2 (Release 14). The older version can
only achieve 26 kbit/s in upstream, but Cat NB2 is significantly
faster with 127 kbit/s upstream and 159 kbit/s downstream. For
comparison, conventional (not HSDPA) 3G initially achieved
380 kbit/s. LTE Cat M1 currently runs at around 1 Mbit/s upstream
and downstream, and Release 14 raises this to 4 Mbit/s upstream
and 7 Mbit/s downstream.

The differences in latency times are enormous. LTE-M can usually
achieve 15 ms, while with NB-IoT the recommended ‘working range’
is from 1.6 s to as much as 10 s. The module manufacturer Sierra
Wireless, especially popular in the USA, describes the situation
as follows:

“Another important fact to consider is that there are no NB-IoT
use cases that LTE-M can’t also support. In other words, LTE-M
supports any LPWA application, whereas NB-IoT is designed for
simpler static sensor type applications.”[1]

In addition, only version 2 of the NB-IoT standard supports position
data provision by the network operator. If the module does not have
GPS capability or you want to do without an external antenna, you
can use this approach to obtain basic position data. Release 14 also
accelerates searching for new cells, which is mainly beneficial for
moving devices. Despite these new benefits of Cat NB2, LTE-M is
still the best choice for automotive and other mobile applications
because it provides smarter cell handover. The final improvement
concerns transmit power: Super Low Power transmitters [2], which
can operate with only 14 dBm, are only allowed in Release 14.

If at some point in time you got your hands on a 4G module for

Table 1: Frequency bands.
Region Bands

Europe 3, 8, 20

(Former) CIS countries 3, 8, 20

North America 2, 4, 5, 12, 66, 71, 26

Asia Pacific (APAC) 1, 3, 5, 8, 18, 20, 26, 28

Sub-Saharan Africa 3, 8

Middle East and parts of North America 8,20

Latin America 2, 3, 5, 29

lektor embedded world Special 2022 87

development environment. This means that our offering is currently
exclusively oriented to business customers, for which we create a
tailored offer in the course of a consultation process.”

When working with ‘ordinary’ 2G/3G/4G systems, one way to get
around this is to use a ‘virtual’ mobile communication provider such
as PodGroup. When asked about this, they answered that NB-IoT
is currently not really suitable, especially for ‘global’ solutions that
need to work with a single SIM card.

There are two reasons for this. Firstly, that the NB-IoT rollout is
still relatively limited. And secondly, that roaming agreements
between the different network operators have generally not yet
been adapted to the new NB-IoT wireless communication standard.
Liked tax treaties between countries, it takes a long time to achieve
such adaptations. In short: international NB-IoT roaming is still
in its infancy.

Is It Worthwhile?
Searching for a practical module that supports only NB-IoT is
certainly a very tricky endeavour. Quectel, for example, offers
two versions even with the smallest series (BC660): one with only
NB-IoT, and the other with both eMTC and NB-IoT. Both wireless
standards are also present in larger families, such as the very
popular BG95 and BG96. Open market prices for these modules
can only be found at SOS Electronic: the BC660K-GL costs €7.63 is
small quantities, while the version with LTE-M and NB-IoT is not
listed. The price there for the BG96 is €19.

How to Get Started
After these basic considerations, it’s time to start thinking about
how you can integrate NB-IoT into practical systems. Of course,
development of customer-specific modems is not feasible for most
companies, but in the past we have described the ‘design in’ process
for wireless modules in detail, for example in Elektor 5-6/2021 [5].

If you don’t want to start developing your own board right away, one
option is to use a ‘turnkey’ evaluation board — although the avail-
ability of Qualcomm ICs is proving to be a problem in this regard.

Two possibilities are the NBIOT-BG96-SHIELD from Avnet,
which integrates a Quectel BG96 module, and the 5G NB IoT
click board from MikroElektronika, which hosts a Cinterion
module. Arduino also offers a small development board in the
form of the MKR NB 1500. However, both of these boards cost
more than 50 dollars.

In many cases, it is no longer permitted to supply evaluation board
equipped with SIMs, so a massive rollout of applications based on
NB-IoT is far from easy. The reason for this is that network opera-
tors have not yet packaged the technology for end users. This is
also openly admitted by operators, as illustrated by the following
statement from Hutchison:

“NB-IoT is a very young and innovative network. As there are hardly
any devices available on the market, the target group primarily
consists of business customers in the hardware (and software)

Figure 1: Comparison of geographic
coverage of CAT-M only (red) and
NB-IoT only (blue) [3].

88 embedded world Special 2022 www.elektormagazine.com

WEB LINKS

[1] LTE-M vs. NB-IoT: What are the Differences?: https://www.sierrawireless.com/iot-blog/lte-m-vs-nb-iot/
[2] Wikipedia entry on narrowband IoT: https://en.wikipedia.org/wiki/Narrowband_IoT
[3] GSMA: Word map of IoT wireless communication standards: https://www.gsma.com/iot/deployment-map/
[4] T-Mobile Narrowband IoT web page: https://t-mo.co/3EC5Jo4
[5] Tom Hanna, “Do Not Fear the Cellular Module!,” Elektor Mag 5-6/2021:
https://www.elektormagazine.com/magazine/elektor-175/59527
[6] u-blox mobile communication modules: https://www.u-blox.com/en/cellular-modules
[7] Klapotetz: https://bit.ly/3nOr0Fb

Figure 3: A traditional Stierian windmill serving as a scarecrow. (Source:
Martin Geisler, CC BY-SA 4.0 [7]).

A search for u-blox [6] yields more results. The SARA-N3 family
includes a module exclusively intended for the NB-IoT set of proto-
cols, but the Swiss company does not offer a pure CAT-M device
(see Figure 2).

At Gemalto, whose takeover by Thales has made the website even
more confusing than it used to be, there is a pure CAT-M module in
the form of the EMS31, along with a pure NB-IoT module (ENS22)
with the same form factor. At the Czech distributor Sectron you
can compare prices: the EMS31 costs €14, the ENS22 only €8.

Information on current consumption (in roundabout form) can be
found in the data sheets, which go by the name ‘Hardware Interface
Description’. The highest current consumption of the EMS31 occurs
when operating in Band 4 and is 239 mA with a supply voltage of
3.8 V. For the ENS22, the highest current listed is 404 mA in Band 28,
but it should also be noted that wireless modules often require
peak currents like this only for a very short time.

Figure 2: Searching for a pure
CAT-M module doesn’t turn
up many results [6].

lektor embedded world Special 2022 89

Questions or Comments?
Do you have technical questions or comments about this article?
If so, please contact the author at tamhan@tamoggemon.com or
the Elektor editorial staff at editor@elektor.com.

Contributors
Text: Tam Hanna
Editor: Rolf Gerstendorf
Translation: Kenneth Cox
Layout: Giel Dols

What’s In It for You?
From a technical point of view, NB-IoT works perfectly, and once you
have arranged an agreement with a carrier, the effort for network
operation is limited to a phone call to your lawyer, unlike the situa-
tion with a home LoRa WAN. The relatively low peak and quies-
cent current consumption of the modules also helps to keep your
electricity bill within bounds.

Whether or not it’s worthwhile in the end is primarily a matter of
scale, just like tax havens such as Dubai or Monaco. If you buy five
modems in a year, operate with a ‘full’ 4G module or, even better, a
module with a beefier power adapter and costing a few euros more,
the sad experience of the author is that in practice you will repeat-
edly need the ‘other’ wireless standard, if only because some base
stations do not support every wireless communication standard.

Naturally, the situation looks different if you are purchasing 50,000
modems that will all go to the same customer. If the mayor’s office
of Großdorf am Klapotetz (Figure 3) needs NB-IoT, the local carrier
will probably upgrade their network, and the cost savings from the
large number of devices will also help.

180021-01

RELATED PRODUCTS

 > H. Henrik Skovgaard, IoT Home Hacks with ESP8266
(Elektor, 2020, SKU 19159)
www.elektor.com/19159

Ensure your products are 100% authentical
Mouser was the first SAE AS6496 accredited distributor

Widest selection of electronic components in stock™
mouser.co.uk/authentic

Authentic products-185x124-en.indd 1Authentic products-185x124-en.indd 1 23.03.22 07:5223.03.22 07:52

Advertisement

90 embedded world Special 2022 www.elektormagazine.com

Say moving coil, and most of you will immediately think of meters. While
they’re now a bit passé, most people have seen or used them at some
time or other. However, I’m talking about moving coil relays. Imagine
connecting a wire to the needle of a meter and then placing another
contact at the end-stop. As the meter achieves full-scale deflection,
it makes contact. That’s basically how these relays work.

I found these moving-coil relays in a switchboard some years ago,
and it took me some time to work out what they were. They are things
of beauty but, in addition to that, they are among the most sensitive
relays I have ever come across.

They are made by BBC Goerz Electro. It’s challenging to find any infor-
mation on this company. We do know that Goerz was an Austrian optical
company. BBC (Brown Boveri Corporation) was and is a Swiss electri-
cal company, which has been through many iterations to become, as
it is known today, ABB (Asea Brown Boveri). BBC Goerz made many
items of professional-looking test equipment using the trade name
Metrawatt, and Gossen Metrawatt currently makes multimeters and
other test equipment. A somewhat chequered career you might say.

Despite that background on the manufacturer, I can find no infor-
mation on these relays apart from someone selling some on eBay
for around $100 each. They are built on an 8-way octal valve type
base. When I first got them, I wondered if they were a type of valve.
However, they have a clear plastic case that screws off, allowing you
to look at the intricate mechanism inside. The type number, 91041-2,
is clearly printed on the case along with a serial number (Figure 1).
Furthermore, there is a connection diagram on the side, which makes
it easier to test them (Figure 2).

Moving Coil
Relays
Peculiar Parts, the series

By David Ashton (Australia)

In this issue, we tackle a really peculiar
component. So much so, we’ve been
unable to find out much about it except
for its physical properties. But, despite its
moving-coil construction, we’re pretty
sure it isn’t a meter!

components

Figure 1: The relays, shown here from behind, with their type
number and plastic case on display.

lektor embedded world Special 2022 91

I rigged up a test jig for these relays — helpfully, I have three sockets
on a bracket with plenty of holes to mount other components. I used
a 470 kΩ potentiometer in series with the relay coil, together with a
12 V supply, and used the contact to drive a LED so I could see when
it was closed. They operate at a current of just 260 µA at a voltage of
113 mV — show me another relay that sensitive!

The contacts are small (Figure 3) and you would have to use them to
operate another relay to switch any meaningful power. These days,
of course, you’d use an optoisolator to do the same thing, making
me think that these devices are pretty old, but you’d still need a bit
more electronics to achieve these specifications. These relays are
certainly peculiar!

210557-01

Questions or Comments?
Do you have technical questions or comments about this article?
Email Elektor at editor@elektor.com.

2

3

1

4

8

5

7

6

Figure 2: This circuit
diagram is printed on the
side of the relay.

Figure 3: An annotated photo highlighting the
location of the hairspring, coil, and contacts.

Ad
ve

rti
se

m
en

t

92 embedded world Special 2022 www.elektormagazine.com

Figure 1:The Dragino LPS8 Indoor
Gateway. (Source: Dragino [5])

By Mathias Claußen (Elektor)

We have often described
how you can interconnect
your own electronics devices
using a LoRaWAN link. If
you are not within range
of an existing LoRaWAN
gateway, or if you simply
want to delve a bit deeper
into the topic, you can set
up and operate your own
gateway. We tried this using
the low-cost Dragino LPS8
Indoor Gateway.

LoRaWAN is a topic we have featured many
number times in Elektor. It is relatively easy
to build a basic LoRaWAN node which has
an associated sensor or actuator module. In
this type of setup, a LoRaWAN module (which
handles communication to the network) is
connected to a microcontroller board such as
an STMicroelectronics STM32 or Raspberry
Pi Pico [1, 2], and this provides an interface
to the sensor. In order for the data sent to
and from the node via LoRa to be transported
further, a remote station is required. In this
case, a LoRaWAN gateway will accept the
data over the air via LoRa and forward it to
an Internet platform like The Things Network
(TTN). You can use a pre-existing gateway
that’s already been set up in your area (many
are run by volunteers), or you can set up your
own gateway. I have been using a Dragino
LPS8 to provide an Indoor Gateway for more
than a year now.

The Dragino LPS8
The Dragino LPS8 Indoor Gateway (Figure 1)
is housed in a plastic enclosure and could
easily be mistaken for a Wi-Fi router. The
electronics inside are powered by a small
Atheros (today Qualcomm) AR9331 Wi-Fi
SoC clocked at 400 MHz which is specifi-
cally designed for use in router platforms and
access points. With 64-MB RAM and 16-MB
Flash, its processing power is not spectac-
ular when compared with something like a
Raspberry Pi Zero 2 W, but it is more than
enough for the functions that the gateway
needs to perform. The SoC also supports
Wi-Fi according to 802.11 b/g/n and provides
a 10/100 Mbit LAN port. The communica-
tion rates available are more than capable of
handling the relatively slow data rate used by
LoRaWAN. The gateway itself does not have
to provide a lot of computing power either,
as it only takes care of the integrated LoRa

review

Dragino LPS8
Indoor Gateway

Speedy LoRaWAN Gateway Setup

lektor embedded world Special 2022 93

transceiver module and forwards the data to
the Internet. A block diagram can be seen
in Figure 2.

The LoRa transceiver is a combination of
a Semtech SX1308 LoRa baseband chip
(Figure 3) and two SX1257 front-end modules
(Figure 4). This combination provides the
conversion from the radio interface to Ethernet.
The gateway is powered via its USB type C port
and requires a 5 V/2 A (10 W) mains adapter.

As the name of the gateway suggests, the
device is not weatherproof and is intended
for use inside a building, so the environment
should be dry and relatively dust-free. The
building structure and internal walls will
reduce the radio coverage compared to an
equivalent device mounted outdoors in free
space with a mast-mounted antenna.

The LPS8 Manual, Firmware
and Setup
The most recent version of the Dragino
manual (available online [3]) describes how
to set up the gateway. The manual has been
continuously maintained since the product
was released and reflects the features and
updates of the current firmware. This is
indeed praiseworthy; I just wish that some
other product manufacturers would adopt
the same attention to detail when it comes
to documentation.

Figure 3: Block diagram of the SX1308 baseband chip. (Source: Semtech [7])

Figure 2: Block diagram of the Dragino LPS8. (Source: Dragino [6])

Figure 4: Block diagram of the SX1257 frontend module. (Source: Semtech [8])

94 embedded world Special 2022 www.elektormagazine.com

WEB LINKS

[1] M. Claußen, “My First LoRaWAN,” ElektorMag 3-4/2020: http://www.elektormagazine.com/magazine/elektor-141/57159
[2] M. Claußen, “LoRa with the Raspberry Pi Pico,” ElektorMag 7-8/2020:

http://www.elektormagazine.com/magazine/elektor-179/59721
[3] Dragino LPS8 Indoor Gateway Handbook: http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/LPS8/
[4] Firmware download of Dragino LPS8 Indoor Gateway: https://bit.ly/LPS8-firmware-release
[5] Gateway picture resource: http://www.dragino.com/media/k2/galleries/148/LPS8-10.jpg
[6] Dragino LPS8 Indoor Gateway Manual: https://bit.ly/LPS8-user-manual
[7] The Semtech SX1257 Front-End Data sheet: https://sforce.co/3fZmy1f
[8] The Semtech SX1308 Transceiver Data sheet: https://sforce.co/32zxAqV

RELATED PRODUCTS

 > Dragino LPS8 Indoor LoRaWAN Gateway (868 MHz) (SKU 19094)
www.elektor.com/19094

 > Seeed Studio LoRa-E5 STM32WLE5JC Development Kit (SKU 19956)
www.elektor.com/19956

Figure 5: Communication paths available via the LPS8 gateway.

The firmware itself is also well maintained.
The current release is dated November 4, 2021
(as of December 15, 2021) [4]. It’s advisable to
update to the latest version before the gateway
is put into service. That will ensure any known
bugs or security weaknesses should be ironed
out as far as possible.

The manual guides you through the setup.
All you need to do is configure the network
appropriately and make the settings for the
LoRaWAN link (e.g., The Things Network).
From this point, the LoRaWAN gateway is
ready for use (Figure 5).

An OpenWRT Substructure
Even though the first page of the web inter-
face doesn’t suggest it, the Linux-based Open
Wireless Router (OpenWRT) firmware is used
as the basis for the Dragino LPS8 indoor
gateway. This not only takes care of the
LoRaWAN gateway function, but also provides
a number of other settings for the router (IP
addresses, forwarding, Wi-Fi).

Thanks to the OpenWRT substructure, an LTE
or 5G modem can also be connected to the
gateway USB port if no other link to the Inter-
net is possible at the device’s location. If you
like, you can also access the Linux command
line using SSH. (Do so at your own risk!)
Additional packages can be installed via the

web interface or command line to add more
functions to the device.

A Reliable Solution
I have personally been using a Dragino LPS8
now for over a year. During that time, it has
proved to be a low-maintenance and reliable
LoRaWAN gateway, which is really all you could
ask of such a device. It continues to do a good
job servicing my various LoRaWAN nodes and
gives excellent coverage throughout the build-
ing (and surrounding area). If you are thinking
of installing an inexpensive LoRaWAN gateway
in a domestic environment, you should take
a closer look at the Dragino LPS8 Indoor
Gateway, which is currently available from the
Elektor Store [5].

210680-01

Questions or Comments?
Do you have any technical questions or
comments about this article? Contact the
author at mathias.claussen@elektor.com
or contact the Elektor team at editor@
elektor.com.

Contributors
Text: Mathias Claußen
Editor: Jens Nickel, C.J. Abate
Translator: Martin Cooke
Layout: Harmen Heida

lektor embedded world Special 2022 95

I/O ports are configured and controlled using a set of four registers
in the ATtiny13(A) and ATtiny25/45/85. When a pin is configured
as an input pin, a program running on the AVR can read the logic
level on the pin. If a switch is attached to the pin, the logic level
on the pin can be read to see if the switch is open or closed. When
a pin is configured as an output pin, it can be used to switch the
logic level of the pin high (to logic level 1) or low (to logic level 0).
An output pin can be used to drive an LED as was done in the LED
blink project described elsewhere in the book.

Configuring I/O Pins as Outputs in Assembler
In this section, we look at how to configure more than one pin as
an output using an 8-pin ATtiny with five LEDs attached to pins
with series resistors. Code is used to configure the LEDs as a 5-bit
binary counter that counts up from zero.

Figure 1 shows a circuit diagram of an ATtiny13(A) or ATtiny25/45/85
AVR microcontroller with five LEDs attached to I/O pins PB0 to PB4.
Pin PB5 of the ATtiny microcontroller in the circuit is used as the
debugWIRE pin for programming and debugging the microcontroller.

Remember that to use this configuration a programmer/debugger,
such as an Atmel-ICE, or AVR Dragon must be used.

Explore ATtiny Microcontrollers
Using C and Assembly Language
Sample Chapter: ATtiny I/O Ports

By Warwick A. Smith (South Africa)

I/O ports control the pins of a microcontroller
and allow them to be individually configured
as input pins or output pins. That’s such a
broad statement, it should fit just about any
newbie course or introduction to microcontroller
programming. However, to truly comprehend and
exploit a microcontroller’s I/O abilities, you need to delve
deeper into the machine. In this article, Elektor book author
Warwick Smith pulls it off by demo-ing some assembly-code programming on the popular
ATtiny micro. Convincing? Let’s check it out!

elektor books

Editor’s Note. This article is an excerpt from the 376-page book Explore ATtiny Microcontrollers using C and Assembly Language (W. Smith,
Elektor, 2021) The excerpt was formatted and lightly edited to match Elektor Mag’s editorial standards and page layout. Being an extract from
a larger publication, some terms in this article may refer to discussions elsewhere in the book. The Author and Editor have done their best to
preclude such instances and are happy to help with queries. Contact details are in the Questions or Comments? box.

Figure 1: Five-LED Counter circuit diagram.

96 embedded world Special 2022 www.elektormagazine.com

only one pin for programming. Another solution is to program the
AVR on another breadboard using ISP/SPI, and then plug it into the
target circuit afterwards.

Alternatively, an AVR with more pins can be used, but the free port
pins don’t always match the same pins from the same port of an
8-pin PDIP ATtiny. For example, if using port pins PB0 to PB4 like
the circuit of Figure 1 does, there are not five consecutive free pins
available on the 14-pin ATtiny24/44/84 range of AVRs, because the
ISP/SPI pins use up pins from both port A and port B. On the 20-pin
ATtiny26/261/461/861 range, the whole of port A is free with an
ISP/SPI programmer connected, but this means that the software
needs to be changed to use port A instead of port B. Fortunately,
the 20-pin ATtiny2313/4313 range does have pins PB0 to PB4 free
with an ISP/SPI programmer connected.

Putting the AVR into debugWIRE Mode
In order for the microcontroller to be programmed using a single
debugWIRE line as shown in Figure 1, it is necessary to first connect
all of the ISP header lines to the microcontroller from the USB
programmer/debugger and then set the DWEN fuse of the AVR to
put it into debugWIRE mode. Your AVR will now be in debugWIRE
mode. If not, attach your programmer/debugger, such as an Atmel-
ICE or AVR Dragon, and ensure you are ready and able to set the
DWEN fuse. Once the DWEN fuse is programmed, all of the ISP header
connections can be removed from the circuit except RESET, +5 V
(Vcc) and GND as Figure 1 shows.

Build the 5-LED ATtiny Circuit on Breadboard
If you have the hardware, then build the circuit of Figure 1 on an
electronic breadboard. Make sure that the five LEDs are connected
in a row on the breadboard with pins PB0 to PB4 connected in
order starting at PB0 on the right. LED D1 will then be on the
right of the row and D5 on the left. In other words, we want a
single row of LEDs with PB0 connected to the LED on the right,
PB1 connected to the LED next to it on the left, PB2 connected
to the LED third from the right, and so on, as can be seen in the
breadboard layout of Figure 2. The image shows just the outlines
of the LEDs so that they do not block the view of the wire connec-
tions and resistors. If you do not have the hardware, then follow
the programs using a simulator.

Assembly Code for the 5-LED Count Circuit
Start a new Microchip Studio AVR Assembler Project called led_
count_asm. Type the code shown in Listing 1 into main.asm of the
project, replacing the skeleton code.

If you are using the hardware of Figure 1, then select the hardware
tool (your debugger), such as the Atmel-ICE within Microchip Studio,
with debugWIRE as the interface. You do so by clicking the hammer
icon on the second top toolbar. If you are using the simulator, select
Simulator as the tool instead. If using a “hobby” programmer, read
on to be prompted to load the program to the target ATtiny.

The led_count_asm program configures pins PB0 to PB4 as output

A program-only USB programmer will not work in debugWIRE mode,
and can not perform debugging. Reminder: Do not set the DWEN fuse
with a program-only USB programmer because it will not be able
to take the AVR back out of debugWIRE mode. The idea of using
debugWIRE mode with this example circuit is to free up the other pins
of the AVR that are normally used in ISP/SPI programming mode.

Program-Only Programmers
USB programmers with program-only capabilities can be used with
the circuit of Figure 1 to load the example program that follows
and see the count value displayed on the LEDs.

Wire the LEDs as shown in Figure 1 and Figure 2. The original
USBasp design and the original USBtinyISP design both have protec-
tion resistors on the lines that drive out from these programmers,
protecting the programmer, and the target AVR chip. The Arduino
Uno programmed as an ArduinoISP does not have any protection
resistors, but these can be added on the Arduino Uno MOSI line
and SCK line which drive into the target AVR. 270-Ω protection
resistors are used in the original USBasp design, and are placed on
the MOSI, SCK and RESET lines. 1k5 resistors are used on the MOSI
and RESET lines of the original USBtinyISP design.

Protection resistors prevent a short-circuit should one of the target
AVR pins drive an output voltage at the same time that the program-
mer drives an output voltage of opposite polarity.

Peripheral Hardware Devices Interfering with Programming
Although the circuit of Figure 1 can be programmed using the ISP/SPI
interface with the LEDs and series resistors attached, other circuits
may have hardware attached that interferes with programming. If any
peripheral hardware attached to pins of an AVR to be programmed
will interfere with programming the AVR, there are some solutions
to this problem. Of course, those readers who have a debugWIRE
capable USB programmer/debugger, such as the Atmel-ICE, can
simply put the target AVR into debugWIRE mode, and thereby use

Figure 2: Five-LED count circuit breadboard layout.

lektor embedded world Special 2022 97

corresponding pin becomes an input pin which is the default of all
pins at power-up or reset. At the top of the program, 0b0001_1111
is first written to register R16, and then written from R16 to the
DDRB register using the OUT instruction. It is necessary to first
load the constant value to R16 because there is no instruction to
directly write a constant value to an I/O register such as DDRB.
Writing 0b0001_1111 to DDRB sets bits DDB0 to DDB4 making pins

pins so that the LEDs attached to these pins can be driven on and
off by the program. The program displays an incrementing binary
number, or count, on the LEDs starting at 0 (represented by all
LEDs off). When the count reaches its maximum value (all LEDs
on) it wraps around to zero and starts counting up again. Each “off”
LED represents a binary zero digit or logic 0 level, and each “on”
LED represents a binary one digit, or logic 1 level. It is important
to lay out the LEDs as shown in Figure 2 so that the count displays
correctly with PB0/D1 as the LSB and PB4/D5 as the MSB of the
count value.

Build the program and load it to the AVR if you are using the
physical hardware of Figure 1 and Figure 2. If using an Atmel-ICE
or AVR Dragon, use the Start Without Debugging icon on the top
toolbar of Microchip Studio or keyboard shortcut Ctrl + Alt + F5
to load the program to the AVR. If the debugger interface is set
up correctly and the chip is in debugWIRE mode, the program
will load and start running. The incrementing binary count will
be seen on the LEDs. If using a program-only USB programmer
such as a hobby programmer, then load the program to the target
AVR using the appropriate function. If the program was typed
correctly, the circuit wired correctly, and the program was saved
and built after typing it in, you will see the binary count value
counting up on the LEDs and you can use the simulator with the
rest of the text that follows.

If you don’t have the physical hardware, you can still see the count
value by using the Simulator in Microchip Studio. The program
can be stepped through by using the Start Debugging and Break
icons. With the simulator started, open the I/O window from the
top menu by clicking Debug Windows I/O, and then click on the
I/O Port (PORTB) item. Step over the program using the Step Over
icon or F10 keyboard key. Look at the PORTB item at the bottom
of the I/O window to see the count value that would be displayed
on the LEDs if they were attached. The count is updated in PORTB
each time that the OUT instruction is stepped over in the main loop.

How the LED Count Assembler Program Works
Half of the led_count_asm program code consists of the delay
subroutine that was used in the LED blink program discussed
elsewhere in the book. This subroutine is called once in the main
loop of the program so that the count on the LEDs is visible to the
eye without flashing past too fast. Have the led_count_asm project
open in Microchip Studio, with the code from main.asm also open
while following the explanation of the code that follows.

The first two instructions of the program are used to set pins PB0
to PB4 as output pins to drive the LEDs by setting bits in the DDRB
register. Figure 3 shows the DDRB register at the top of the figure.
Each bit in this register corresponds to a pin on the microcontroller.
For example, bit DDB0 corresponds to pin PB0, DDB1 corresponds
to pin PB1, and so on.

When a bit in DDRB is set to logic 1, the corresponding pin
becomes an output pin. If a bit in DDRB is cleared to logic 0, the

Listing 1: led_count_asm : main.asm

 ; Set up pins PB0 to PB4 as output pins
 ldi r16, 0b0001_1111
 out DDRB, r16
 clr r18 ; Clear count register
loop:
 out PORTB, r18 ; Display count on LEDs
 rcall delay
 inc r18 ; Increment count
 andi r18, 0b0001_1111 ; Clear unused bits
 rjmp loop
; Delay subroutine

delay:
 ldi r16, 0xff
delloop1:
 ldi r17, 0xff
delloop2:
 dec r17
 brb SREG_Z, delloop2
 dec r16
 brbc SREG_Z, delloop1
 ret

Figure 3: ATtiny13(A) and ATtiny25/45/85 I/O port registers.

98 embedded world Special 2022 www.elektormagazine.com

PORTB are both used to set up and control port B of the microcon-
troller in both programs. The LED blink program only needs to
control a single pin, so uses the SBI and CBI instructions to set and
clear a single bit in the I/O registers directly — none of the working
registers R0 to R31 are needed for this. The LED count program
needs to access five LEDs or pins at the same time so uses the OUT
instruction to write to multiple bits in a register at the same time.

Register usage is important to keep track of in an assembly
language program. For example, an immediate value is loaded to
R16 at the beginning of the program. R16 is only used temporarily
in this instance, so can be used later in the program without the
need to first save its value. It is used again in the delay subrou-
tine. Because R16 and R17 are used in the delay subroutine, R18
was chosen to hold the count value and is not used for anything
else. This ensures that the count value is never overwritten. If
a program gets very big and there are no spare registers to use
for dedicated purposes, then PUSH and POP instructions can be
used at the start and end of a subroutine to preserve the values
in registers that are used.

Using a Breakpoint in the Debugger
With the simulator, or the physical hardware and a hardware debug-
ger such as the Atmel-ICE, use the debugger to step through the
program by clicking Start Debugging and Break as we have done
before. View the I/O port registers by opening the I/O window
in Microchip Studio. With the debugger running, select Debug
Windows I/O and then click I/O Port (PORTB) in the I/O window as
shown in Figure 4.

When program execution enters the main loop, it is convenient to
place a breakpoint on the RJMP instruction and execute the entire
loop by clicking the Continue toolbar button (keyboard key F5). A
breakpoint can be placed on the RJMP instruction by clicking the
gray area at the very left of the instruction and of the Microchip
Studio window. This places a red dot in this area indicating that
a breakpoint has been set on the instruction, as can be seen in
Figure 4. Alternatively, click the instruction that you want to place
a breakpoint on so that the cursor is placed on it, and then select
Debug Toggle Breakpoint from the top menu, or use the F9 keyboard
key. Once the breakpoint is set, use the Continue toolbar button or
press F5 to step though the entire loop and only break at the bottom.
In this way, the count can be seen incrementing by 1 in the PORTB
in the I/O window as well as in register R18 in the Processor Status
window, without having to individually step over each instruction
in the loop.

Remove the breakpoint from the RJMP instruction by clicking the
red dot at the left of the instruction, or use the menu or F9 to toggle
the breakpoint off, assuming that the cursor is on the RJMP instruc-
tion line. Put a breakpoint on the INC R18 instruction. Now use
F5 to step through the loop. The new breakpoint ensures that the
PORTB register and R18 contain the same value when program
execution stops. If program execution stops on RJMP, then R18 is
incremented before writing its new value to PORTB, thus they are

PB0 to PB4 output pins.

Although there are four registers for controlling I/O port B, only
three are shown in Figure 3. The fourth register, MCUCR has only
one bit that applies to port B. This bit is a global pull-up disable bit
that we do not use in this chapter. Refer to the Register Description
part of the datasheet in the I/O Ports section to see this regis-
ter — use either the datasheet for the ATtiny13, ATtiny13A, or
ATtiny25/45/85.

R18 is used in the program to hold an incrementing count value
that is displayed on the LEDs. R18 is cleared to 0 using CLR before
the main loop so that the count starts from 0.

In the main loop, the contents of R18 are sent to the PORTB register
using the OUT instruction. The PORTB register can be seen in the
middle of Figure 3. Again, each bit in this register corresponds to a
pin on the microcontroller. For pins that were set up as output pins
using DDRB, the logic levels written to the PORTB register appear
on these pins. For pins that are set up as input pins, a logic 1 in
PORTB enables an internal pull-up resistor on these pins. A logic 0
disables the pull-up resistor on the corresponding pin.

Because pins PB0 to PB4 are set up as output pins, the count value
written to PORTB appears on these pins as logic levels that switch
the LEDs on and off. A logic 1 in the count value switches the corre-
sponding LED on, and a logic 0 level in the count value switches
the corresponding LED off.

After the count value is written to PORTB using the OUT instruction,
the delay subroutine is called to leave the count value on the LEDs
for a while. Register R18 is then incremented by 1 using the INC
instruction so that the count value that it is holding increments.
ANDI is used to clear the top three bits of the count value in R18,
by using a mask value of 0b0001_1111. This ensures that these
top bits are always zero. Back at the top of the loop when R18 is
written to PORTB again, 0 is always written to the top three bits,
because they were cleared using ANDI. When the end of the loop
is reached at the RJMP instruction, program execution starts at the
top of the loop again, with the new count value written to PORTB,
and displayed on the LEDs.

Some things to note about this program: I/O registers DDRB and

Figure 4: Inserting a Breakpoint in the Microchip Studio Debugger.

lektor embedded world Special 2022 99

unsynchronized when observing these values in the debugger
windows in Microchip Studio.

The software released by the author in support of the book is
available for free downloading. Head over to [1], scroll down to
the Downloads, and click on the file name: Software_Explore ATtiny
Microcontrollers using C and Assembly Language. Save the ZIP archive
file locally (approx. 29 kB) and then extract it.

220045-01

Contributors
Text and Graphics: Warwick Smith
Editor: Jan Buiting
Layout: Giel Dols

Questions or Comments?
Do you have any technical questions or comments related to this
article? Email the author at warwsmi@axxess.co.za or Elektor at
editor@elektor.com.

RELATED PRODUCTS

 > Book: W. Smith: Explore ATtiny Microcontrollers using C
and Assembly Language (SKU 20007)
www.elektor.com/20007

 > E-Book: W. Smith, Explore ATtiny Microcontrollers using C
and Assembly Language (SKU 20008)
www.elektor.com/20008

WEB LINK

[1] Book resources/info page: www.elektor.com/20007

Digital Oscilloscopes:
Powerful and Economical

Ultra Vision II Technology

MSO5000 Series
Digital High-End Oscilloscopes

• Including Bode diagram display
• 70, 100, 200 and 350 MHz Analog Bandwith

(per Software Upgrade)
• 2 (70/100 MHz) or 4 Analog Channels (Upgrade)

+ 16 Digital Channels (MSO)
• Up to 8 GS/sec. Real-Time Sample Rate
• Up to 200 Mpts Memory Depth*
• 500.000 wfms/sec. Waveform Capture Rate
Special Offer → For free until 30.06.2022:
Protocol Analysis, Waveform Generator, Power Analysis

*Option

Immediately available → from € 809,- plus VAT

Benefit now from currently reduced prices
on selected models of the series!

www.rigol.eu
For more information
please contact your
local RIGOL Partner:

X-IN-1
WORKSTATIONS www.lambdaphoto.co.ukwww.rigol-uk.co.uk

Rigol_EN_MSO5000_185x124+3_042022_V01.qxp_Layout 1 13.04.22 14:50 Seite 1 Advertisement

100 embedded world Special 2022 www.elektormagazine.com

For many electronics projects, a Windows PC is used to provide control
functions, data logging and other tasks; it will typically be necessary to
develop a graphical user interface to run under Windows to carry out this
function. Locally executed desktop applications are often the method of
choice here; they give you complete access to the system environment
and, via the appropriate drivers, also provide links to connected peripherals.

Microsoft, as the manufacturer of the Windows operating system, is
currently undergoing a major technological upheaval. The focus of
this activity is on the connectivity and design of user interfaces. The
developments are coordinated under the project names WinUI 3 and
Windows App SDK. In this article, we show what this new graphic inter-
face is all about and where we can use it. First, we get an overview of
the possibilities of programming Windows applications with a graphi-
cal user interface. The purpose of WinUI 3 will become clear by using
different technologies and application types. Not content with a purely
theoretical review of this relatively new type of Windows application,
we will also go ahead and create our first practical application.

The Technology
Basically, current applications using a graphical user interface for the
Windows operating system can broadly be divided into two types. On
the one hand, we have Desktop Applications. These are essentially based
on the use of the Win32 API. There are different approaches, frameworks
and programming languages for their development. The technologies
Windows Forms (WinForms) and Windows Presentation Foundation
(WPF) come from Microsoft. WinForms relies on the Windows GDI inter-
face. WPF is based internally on DirectX and was originally intended as
a replacement for WinForms. Both graphics frameworks were based on

the .NET framework, which was intended for Windows programs and
whose further development ended at version 4.8.

Version .NET 5, on the other hand, is the technological successor to
.NET Core. This framework is not limited to Windows, but can also be
used with other operating systems. Microsoft has surprisingly trans-
formed both WinForms and WPF to .NET Core. If you are creating an
app for Windows today and opt for WinForms or WPF, then you have
the choice between the previous .NET framework and .NET Core. It
is also possible to migrate existing applications, but, as is so often the
case with such projects, it is often associated with a number of issues.
Other manufacturers of development tools for Windows applications
have mostly based them on the graphic interface of the operating
system (GDI) and encapsulated this in their own framework.

The second category of Windows applications are apps for the Univer-
sal Windows Platform (UWP). These run in an individually isolated area
of the operating system and have only limited system access. Users
install these apps through the store. In practice, however, this type of
app has not proved to be popular and its uptake is quite low. One of the
reasons for this is that system access from these apps is very limited.
The UWP however has the advantage that the graphics framework
WinUI 2 used here is significantly more modern than the technologies
of WinForms and WPF. An appealing design, new visual components,
the use of materials and the orientation towards the design language
Fluent Design System are its stand out features. In other words, apps
for the UWP look modern, contemporary and fresh, but their usability
is somewhat limited. To achieve similar effects with the WinForms or
WPF technologies, we need to do some pull-ups, use extensive third-

The WinUI Graphics
Framework for Windows Apps
A Small Demo Application

By Dr. Veikko Krypczyk (Germany)

Software designed to control various electronic applications often runs
in a Windows environment. Using a locally installed desktop application
gives you direct access to all of the PC’s system interfaces. Microsoft is
currently rationalizing its support for developers working with Windows
interface frameworks. The new graphics interface WinUI 3 is the way
forward. Here, we will take a look at the technical background and show
how to use it by building a small demo app for electronics technicians.

software

lektor embedded world Special 2022 101

 > Separation of code and design: The user interface is declaratively
created in separate files using the XML-based XAML language.

 > UI control elements: A range of controls are available for design-
ing the user interface. These include basic elements such as
buttons and text entry fields, along with more complex and
advanced elements such as a calendar control element, a
WebView or an element for displaying personal data, which we
can use, for example, for user administration. If you would like to
explore the range of control elements further go to the Micro-
soft Store and download the WinUI 3 Controls Gallery app from
there. This app gives a preview of the available controls for WinUI
3. Their use (Use Case) and their integration in the source code
(XAML) are demonstrated. Corresponding links to the documen-
tation can also be found (Figure 1).

 > Loose coupling through DataBinding: The properties and events
of the control elements are linked to the source code by means
of data binding. In this way, data is exchanged in both directions
between the program code and the user interface control. Events
of the control elements, such as the click on a button, are also
forwarded to the relevant algorithm in the same way.

 > Modern Design: The WinUI 3 provides a contemporary feel.
This includes the use of Microsoft’s design language Fluent
Design System with the Mica material introduced in Windows 11.
The Fluent Design System provides the following UI elements:
conscious use of geometry and colour, overlapping of surfaces,
use of selected materials and the use of specific iconography and
typography for visual design using images, symbols and fonts.
Motions between UI elements are also supported.

party components or “mix” the WinForms/WPF technologies with the
UWP. This approach however quickly leads to a more complex app
structure and brings with it the typical disadvantages, such as higher
susceptibility to errors and poorer maintainability.

Software designed for electronic control, development, etc., are
almost without exception classic desktop applications. You can also
build these using other tools and frameworks. For the program-
ming language Java there is, for example, the graphics framework
Swing, which for Windows is based internally on the GDI operat-
ing system interface.

The WinUI 3 Graphic Framework
With the introduction of the WinUI 3 graphic interface, Microsoft
would like to enable all applications under Windows to use a modern
graphic interface. WinUI 3 is the technological successor to WinUI 2
[1]. However, it is available for all types of Windows applications and
is therefore not limited to use in apps for the UWP. WinUI 3 is part
of the new Windows App SDK, which is also provided in parallel
with the introduction of Windows 11. The Windows APP SDK bundles
new features for the development of Windows applications. It is not
only aimed at Windows 11, but can also be used under the current
versions of Windows 10. Development of the Windows App SDK is
still ongoing, but a first version is available that can already be used
in newly created applications.

WinUI 3 is technically and conceptually based on WinUI 2. If you have
ever developed an app for the UWP, you will quickly get to grips with
it. It is based on the following principles:

Figure 1: App: WinUI 3 Controls Gallery.

102 embedded world Special 2022 www.elektormagazine.com

Let’s look at the procedure for developing applications with the WinUI 3.
First, we will need to set up the development environment.

The Development Environment and Setup
The current version of Visual Studio 2019 [2] will be used as the devel-
opment environment. The Community Edition will be sufficient for our
needs. By the time you’re reading this article, a stable version of Visual
Studio 2022 may already be available, in which case you should use
this version. It is advisable to install the latest updates for the operating
system beforehand. During the installation of Visual Studio, you will
be asked to select the installation packages. You can also call up the
Visual Studio Installer at any point later on via the start menu. Now
select the following installation packages (Workloads): .NET desktop
development, Desktop development with C ++ and Universal Windows
Platform development (Figure 2). After installation, start Visual Studio
and in the start screen select the option Continue without code ->
(Figure 3).

We now also need to install the template for development with WinUI 3.
To do this in Visual Studio, choose the menu option Extensions |
Manage Extensions. Search here for Project Reunion (the develop-
ment name of the new Windows App SDK) and install the current
version (Figure 4). In the same way install the Windows Template
Studio extension. This offers advanced templates for creating a new
application. Visual Studio must be restarted after the extensions have
been downloaded; the installation will then take place automatically.

Figure 2: Select the necessary Workloads for Visual Studio.

Figure 3: First Start of Visual Studio.

Figure 4: Windows SDK App (Project “Reunion”) installation.

lektor embedded world Special 2022 103

An App for WinUI 3
Let’s start by creating a new project. Here in Figure 5 we select the
App WinUI 3 in Desktop template (Windows Template Studio). In the
Windows Template Studio (Figure 6), we can configure the project:

 > Project type: Here we specify the type of navigation, for example
with a menu bar or a side navigation bar (Hamburger menu).

 > Design pattern: Direct installation and configuration of the MVVM
toolkit. This couples the elements of the user interface (defined in
XAML) with the program logic (programming language C#).

 > Pages: We can add a number of pages to the project. We can
choose from different templates, for example one page for enter-
ing program settings.

 > Features: Here we can select some sample themes or save
program settings.

By clicking on the Create button, we generate the desktop applica-
tion that WinUI 3 uses. Windows Template Studio generates a project
folder with three projects:

 > App: This contains the source code for the desktop application.
In the subfolder View, for example, you will find the XAML files for
the pages that were created by Windows Template Studio. The
program logic is stored in files in the ViewModel program folder.

 > Package: The project is responsible for providing the desktop
application. At the moment, WinUI 3 applications are installed on
the target computer as an app package. This format has so far
been used for UWP apps. The generated packages can also be
distributed by using Store. Future versions of the Windows App
SDK should also allow installation without an app package.

 > Core: This project contains the collection of services and classes
that provide service for the app. This project is not mandatory
and can be left out.

Start the application directly from Visual Studio using the green arrow
on the toolbar. Congratulations - You have created your first appli-
cation with WinUI 3 (Figure 7). I should emphasis again; this is a
desktop application with full system access. As already mentioned,
this is important for software designed to control external electron-
ics, for example. A side navigation bar, first pages and the possibility
to adapt the application design are all possible. You have all options
for accessing the system, including communication with the system
libraries and drivers. Now we can go ahead and experiment with the
design of the user interface.

A Demo Application
The best way to become familiar with any new system is to try it out.
Here we will design a simple user interface for our first application (the
source code, for this example, can be found on the web page for the
article [3]). The starting point is the XAML file for the relevant page.
As an experiment we can create a handy calculation tool for use with
the LM317 adjustable linear voltage regulator (Figure 8). The output
voltage of this device is given by the formula Vout = 1.25 (1 + R2/
R1). We can solve this equation for R2 and thus calculate its value to
give the desired output voltage. With the help of this example we can

Figure 5: Project template WinUI 3 Desktop.

Figure 6: Windows Template Studio.

Figure 7: A first desktop application with WinUI 3.

104 embedded world Special 2022 www.elektormagazine.com

demonstrate the procedure for programming applications with WinUI
3. This process will include the following steps:

 > Definition of the User Interface in XAML.
 > Coding the Program logic in C#.
 > Binding the user interface to the program logic.
 > Forwarding the user interaction from the user interface to the
program logic.

 > Output the data to the form.

Let’s start by defining the surface. We need two text fields to record
the values of R1 and VOut. We also need a text field for the value of R2.
A Button will be required to trigger the calculation. We use TextBox
controls for input and output. All the elements should be arranged in
the form of a vertical stack one above the other, which is why they are
inserted into a layout container of the type <StackPanel />. Without

Table 1: Control Elements

Control
Element Property Value Description

TextBoxR1

Width 200 Textbox width

Margin 20, 20, 0, 0 Margin size: left, top, right, bottom

HorizontalAlignment Left Left justified

Header R1: Caption

Text x:Bind ViewModel.R1 Binding the property to the variable R1 in C#.

TextBoxU
(out)

Width 200 Textbox width

Margin 20, 10 Margin size: left, top, right, bottom

HorizontalAlignment Left Left justified

Header U (out): Caption

Text
x:Bind ViewModel.
UOut

Binding the property to the variable UOut in C#.

TextBoxR2

Width 200 Textbox width

Background LightGray Background colour

Margin 20, 10 Margin size: left, top, right, bottom

HorizontalAlignment Left Left justified

Header R2: Caption

IsReadOnly True Read only protection

Text x:Bind ViewModel.R2 Binding the property to the variable R2 in C#.

Button

Width 200 Button area width

Margin 20, 10 Margin size: left, top, right, bottom

Background LightGreen Background colour

Command
x:Bind ViewModel.
CalcCommand

Binding to the CalcCommand Method in C#.

Content Calc Caption

FontWeight Bold Font properties

Figure 8: LM317 voltage regulator circuit diagram.

lektor embedded world Special 2022 105

the application is started - without saving — and produce an updated
display. This feature is called Hot Reload and is standard when creat-
ing graphical user interfaces.

What is interesting here is the control binding of the control elements of
TextBox type with the properties of Text. Here you will find an expres-
sion according to the pattern in the XAML code:

the need for any further configuration, all the elements will be arranged
one above the other with StackPanel. The controls are configured via
the XAML code, with the properties according to Table 1.

The associated source code is shown in Listing 1. You can code the
surface interactively. Start the application and place the relevant XAML
file in Visual Studio and the application side by side on the screen
(Figure 9). Changes in the XAML code are immediately adopted when

Listing 1. Definition of User Interfaces

<Page
 x:Class="App1.Views.MainPage"
 …>

 <Grid x:Name="ContentArea" Margin="">
 <StackPanel Background="">
 <TextBox
 Width="200"
 Margin="20,20,0,0"
 HorizontalAlignment="Left"
 Header="R1:"
 Text="" />
 <TextBox
 Width="200"
 Margin="20,10"
 HorizontalAlignment="Left"
 Header="U (out):"
 Text="" />

 <Button
 Width="200"
 Margin="20,10"
 Background="LightGreen"
 Command=""
 Content="Calc"
 FontWeight="Bold" />
 <TextBox
 Width="200"
 Margin="20,10"
 HorizontalAlignment="Left"
 Background="LightGray"
 Header="R2:"
 IsReadOnly="True"
 Text="" />
 </StackPanel>
 </Grid>
</Page>

Figure 9: Coding the UI surface in Live-
mode (Hot Reload).

106 embedded world Special 2022 www.elektormagazine.com

two layers. Thanks to the MVVM concept, all layers are decoupled
and can be developed and maintained independently of one another.
Information on the MVVM pattern can be found under [4].

Program Logic
The program logic is implemented using C# (Listing 2). For this
purpose, a program file (ViewModel) is assigned to each window of

Text="{x:Bind ViewModel.R1, Mode=TwoWay, UpdateSource
Trigger=PropertyChanged}"

This means that the property of Text is bound to the variable R1. This is
defined in the ViewModel page and is based on the MVVM concept.
UI events are handled in the View layer and data is managed in the
Model layer. The ViewModel represents the connection between the

Figure 10: Example Relationship between View and ViewModel.

Listing 2. Program logic for the calculation in C#

using CommunityToolkit.Mvvm.ComponentModel;
using CommunityToolkit.Mvvm.Input;

namespace App1.ViewModels
{
 public class MainViewModel : ObservableRecipient
 {
 public double R1 { get; set; } = 240;
 public double UOut { get; set; }

 private double r2;
 public double R2
 {
 get
 {
 return r2;
 }
 set

 {
 SetProperty(ref r2, value);
 }
 }

 public RelayCommand CalcCommand;
 public MainViewModel()
 {
 CalcCommand = new RelayCommand(calcComm
 andExecute);
 }

 private void calcCommandExecute()
 {
 R2 = (UOut / 1.25 - 1) * R1;
 }
 }
}

lektor embedded world Special 2022 107

Conclusions and Outlook
You can choose from a variety of technologies to create an application
for the Windows operating system. The trend — also with a view to
Windows 11 — is towards the use of WinUI 3. Using this will enable you
to create an attractive and up to date user interface. From this perspec-
tive, it is worthwhile considering WinUI 3 when developing any new
Windows application and to check migration options for any existing
applications. The resulting applications have a contemporary interface
and produce a good user experience. There are also no limitations on
system access as there are with the UWP application model.

210407-01

Contributors
Text and images: Dr. Veikko Krypczyk
Editor: Jens Nickel
Translation: Martin Cooke
Layout: Giel Dols

Questions or Comments?
Do you have any technical questions or comments prompted by
this article? If so, please contact the editor at editor@elektor.com.

the user interface (View). In our example, it is the MainViewModel file
assigned to the view MainPage. Here are some notes on the program
code:

 > Import of libraries: This is done via the uses statement. In our
case we need two libraries for the MVVM pattern.

 > Definition of properties: These must be public because we
access the properties from outside, in this case from the view.

 > Automatic User Interface updating: The MainViewModel class
is derived from the ObservableRecipient base class, which was
generated by the project wizard when the project was created.
This class in turn implements the so-called OnPropertyChanged
event. This ensures that when a value of a property changes,
all bound elements are notified of the change. In our case the
property R2 is of interest. The value of R2 is calculated in the
program code. The so-called Setter of the property is called and
the OnPropertyChanged event just described is triggered via the
SetProperty (…) method. The Text property of the TextBox R2
is bound to the property R2 (in the ViewModel). If R2 is changed,
the displayed value is automatically updated in the associated
TextBox. This works thanks to data binding.

 > Pass on user actions by means of commands: If the user
presses the button, a command is triggered. The calculation
method is linked to this command. Here, too, the user interface
and program code are only linked to one another via the data link.

 > Assignment of View and ViewModel: The program code (file:
MainViewModel.cs) is assigned to the UI (file: MainPage.xaml).
This is done in the page’s code-behind file (file: MainPage.xaml.
cs). You can see this if you take a look at the source code.

 > Calculation: Calculation of value of R2 takes place in the
calcCommandExecute (...) method according to the above
formula, which is then assigned to R2.

The user interface is therefore “loosely” linked to the program code by
means of data binding. The connections to data binding just described
are visualized using the example in Figure 10. Start the application
and try it out. The value of the second resistor R2 is calculated after
entering the values of R1 and VOut (Figure 11).

We have thus described the basic development model for desktop appli-
cations with the WinUI 3 graphics framework. From today’s perspec-
tive, it will become a new standard under Windows and can also be
used by other development environments and languages. The variety
of graphical options for creating modern applications is impressive.

WEB LINKS

[1] Information for WinUI 3: https://docs.microsoft.com/en-us/windows/apps/winui/
[2] Visual Studio 2019: https://visualstudio.microsoft.com/
[3] Project page for this article: http://www.elektormagazine.com/210407-01
[4] Information for MVVM pattern: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

Figure 11: The finished app example.

108 embedded world Special 2022 www.elektormagazine.com

By Dr. Thomas Scherer (Germany)

What is an off-grid solar
system? Where are such
installations necessary or
practical? What are the
most important design
considerations? These
questions and more will be
answered in this article.

In the September/October 2021 edition
of Elektor, we took a look at a photovoltaic
system connected to the mains grid [1]. Here
we will consider essentially autonomous solar
installations that are isolated from the public
grid. These can be used to generate electri-
cal energy where otherwise a grid connec-
tion would be too costly, such as in a shed
on an allotment, or impossible, such as on a
motorboat or sailing boat. In general these are

low-power systems which can handle a peak
demand in the range of a few watts to a couple
of kilowatts. Also, as the levels of feed-in tariffs
continue to fall, new and simplified designs
for fixed domestic solar installations that store
the generated energy locally in rechargeable
batteries solely for private use, rather than
feeding into the public supply grid, begin to
make more sense. These installations typically
have a maximum nominal power output of a
few kWp (‘kilowatts peak’). Let us now look
at these small-scale systems in more detail.

Principle of Operation
An off-grid solar installation requires at least
three components: the solar panel itself; some
energy storage in the form of a rechargeable
battery; and finally a charge controller that
ensures that the battery is not overcharged.
For smaller systems, typically operating at
12 V, that is in theory all that is needed. If,
however, a 230 V AC output is required at
50 Hz or 60 Hz, a fourth component comes
into play: an inverter. Figure 1 shows a typical
four-component solution: superficially it

looks very simple, but as ever the devil is
in the detail. In the following sections we
will therefore take a look at these individual
components.

Here’s a real-life example: Klaus, a good friend
of mine, decided to install a 12 V system in his
shed because of the low prices and manage-
able size of the components involved. To
design the system and specify the compo-
nents there are two questions that first need
to be answered.

Energy and Power
The first question to answer is how much total
energy needs to be stored by the system. This
directly affects the required capacity of the
rechargeable battery and hence it is neces-
sary to estimate the average load on the
installation. Bearing on this calculation is
the number of cloudy days that the system
must be able to ‘survive’. Klaus would like to
use an electric drill in his shed, and brew the
occasional cup of tea, but these relatively
rare loads do not significantly affect the

background

Off-Grid Solar Systems
Electrical Energy Independent of the Mains Grid

lektor embedded world Special 2022 109

average load calculation. More significant is
the requirement to keep cool beer always at
hand: this calls for a 12 V refrigerator operating
continuously with an average power draw of
20 W. The system should be able to run for
at least one day without sun.

The second question is the peak power
requirement. From this we can determine the
maximum current that will be drawn from the
rechargeable battery and hence also specify
the parameters of the charge controller (and
inverter, if used). Usually this question is very
easy to answer: in the case of my friend’s
allotment shed the answer was 1 kW, cover-
ing the power draw of the water heater, a
standard drill and possibly also a water pump,
all operating at 230 V.

The Solar Panel
Over a 24-hour period the refrigerator in Klaus’
shed will consume a maximum of 500 Wh.
Although he lives in a sunny part of south-
west Germany, the roof of his shed is unfortu-
nately in the shadow of a tree and so the panel
cannot be installed there. Instead it will have
to be mounted vertically on the south-fac-
ing wall of the shed, which reduces its power
output by some 30 % compared to mounting
it at the optimal angle to the sun. The panel
will therefore have to be over-specified by
some 40 % to compensate for this loss. Fortu-
nately there is plenty of space available and
the price of panels has fallen considerably in
recent years. An advantage of vertical mount-
ing is that in winter snow will not lie on the
panel, and moreover, since the sun is at a
lower angle, the output will increase: in the
best-case scenario the beer will be kept cool
even on sunny winter days.

Now we can calculate the required power
output from the panel. In this part of Germany
we can reckon on an total incident energy of
over 1200 kWh/m2 over the course of a year.
Over and above the expected daily energy use
we should allow a safety margin of 100 %, and
so for 500 Wh/day (from spring to autumn)
we should be looking to generate 1 kWh/day.
On the basis of 8 hours of sunshine per day
we arrive at a required power output from the
panel of around 125 Wp. On top of that we
add the compensation for vertical mounting
and arrive at 175 Wp. That means we need a
180 W panel, which will fit comfortably on the
shed wall: see Figure 2.

Figure 1: The standard wiring of the four components normally found in an off-grid solar
installation. The inverter on the right is only required if it is desired to run equipment
designed for 230 V operation.

Figure 2: The 12 V solar panel mounted vertically on the wall of Klaus’ shed. It has an
output rating of 180 Wp.

The Rechargeable Battery or Batteries
The energy required to provide one day of
reserve power is at least 500 Wh. At a nominal
voltage of 12 V we will need a battery with a
capacity of at least 40 Ah. Since our inverter
is specified with an output power of 1 kW, we
must also keep in mind that at maximum load
it will be drawing a current of at least 85 A at

its input. This is an important consideration in
selecting a battery. First we must decide on
the battery chemistry. A lithium battery pack
rated at 40 Ah can comfortably deal with this
current (about ‘2C’, or twice the current that
the battery can deliver for one hour) because
of its low internal resistance. However, such a
pack can easily cost over €250/US$280/£210

110 embedded world Special 2022 www.elektormagazine.com

and requires careful management. Instead,
Klaus plumped for a simple lead-based
battery costing a fraction of that price. An
obvious choice was a car battery, since these
are designed for high peak currents. However,
they have disadvantages: low efficiency, low
cycle life and high self-discharge rate. For that
reason he compromised on a gel battery: this
type does not like high discharge currents, and
so two batteries, each rated at 36 Ah, were
connected in parallel. This combination offers
a nominal 864 Wh of stored energy and cost
a little under €150/US$170/£130.

In direct sunshine the selected solar panel
delivers so much power that it can easily fully
charge the batteries in a single day, and their
capacity is enough to cover 1.5 days without
sunshine. I had some misgivings about the
high current draw at the input of the inverter,
but Klaus decided to give it a shot and, if two
batteries proved not up to the job, to buy
another and add it in parallel. With the system
installed and the batteries fully charged, a first
test was fun using a 1 kW water heater. While
running the voltage at the battery terminals fell
to 11.7 V, but nevertheless it was easy enough
to bring half a litre of water to the boil. At a
rough estimate the efficiency of the battery
(output energy divided by input energy) at
these high currents is at most 50 % and the
current does not do the battery’s health any
favours. A further 36 Ah battery was there-
fore ordered and wired in: see Figure 3. Now
the initial terminal voltage when discharging
at 85 A is a more acceptable 12.6 V, and the
total capacity has been increased to nearly
1.3 kWh, guaranteeing over two days of reserve.

The Charge Controller
A search of eBay or of specialist distributors
will turn up a wide range of charge control-
lers. Controllers rated at 10 A go for as little
as €15/US$17/£13. However, a 180 Wp panel
will deliver up to 15 A at 12 V, and so we need
a controller rated at at least 20 A: these cost
around €20/US$23/£17. If the charge controller
is to be connected as shown in Figure 1, then
it is better to choose a 100 A version, costing
perhaps a little under €50/US$55/£45. Now
let’s go into the details.

The charge controller has the job of charging
the battery using the power delivered from the
panel, and terminating the charging process
when a threshold voltage is reached. This

Figure 3: Three 12 V lead gel batteries, each rated at 36 Ah, are wired in parallel to act as
energy storage in Klaus’ shed.

Figure 4: From left to right: light switch, 30 A electromagnetic circuit breaker, and MPPT
charge controller.

Figure 5: Charge controllers that look like this one certainly do not have MPPT
functionality (even if they carry a sticker bearing those letters!). (Source: United States
Department of Energy)

lektor embedded world Special 2022 111

The Inverter
If it is a requirement to generate a 230 V AC
output, then an inverter is essential. Low-cost
examples with implausible power specifica-
tions and output voltage waveforms at best
distantly related to a sinusoid are best given
a wide berth. An important point to note is
that the specification for maximum continuous

do this requires just a simple microcontroller
and a power MOSFET: a low-cost solution,
but not optimal.

Now, the output power of a panel is given
by the product of its output voltage and
output current. For any given panel and
level of illumination there is a point where
this product is maximized; almost invariably at
this maximum power point the output voltage
of the panel is above the battery voltage. An
MPPT (maximum power point tracking)
controller continuously determines where
this ‘sweet spot’ is and drives a step-down
voltage regulator circuit such that it draws
the optimal current and delivers the maximum
possible output power. In the best case the
output power from an MPPT controller can
be 30% higher than that from a PWM control-
ler. However, this comes at a cost : even a
low-cost MPPT controller will set you back
over €50/US$55/£45, and a name-brand
unit will be at least €100/US$110/£85. The
30 A charge controller shown in Figure 4 is
a low-cost MPPT type, and costs about €60/
US$70/£50, but Klaus felt that the extra output
power was worth the money. If you are looking
for an MPPT controller, avoid ones like that
shown in Figure 5: this type is available in a
range of colours and with different markings.

ensures that the connected battery is not
overcharged and hence damaged. Almost
all charge controllers also control the load
connection and ensure that the load is
disconnected when a lower voltage thresh-
old is reached, this time protecting the battery
from deep discharge. They invariably employ
a microcontroller and so most can be config-
ured to work with different battery types,
including lead-acid, lead gel and lithium
chemistries. They also automatically adapt
to a nominal terminal voltage of either 12 V
or 24 V. Often it is also possible to configure
the undervoltage and overvoltage thresholds
manually.

The next consideration is the charger topol-
ogy. All low-cost examples use PWM control,
even if it says ‘MPPT’ on the device: labels
are cheap, but a ‘real’ MPPT charger is better,
more complicated and therefore rather more
expensive.

In a PWM controller the charge current is
adjusted so that the output voltage of the
panel is just above the current battery termi-
nal voltage. The battery is therefore charged
at the maximum possible current given the
amount of incident light on the panel and its
size, and the state of charge of the battery
over a wide range of conditions. The circuit to

Figure 6: This 1 kW inverter made by Ective has
proved very stable and reliable over time.

Advertisement

112 embedded world Special 2022 www.elektormagazine.com

power is given for an ohmic load. Klaus’ 1 kW
inverter is perfectly suitable for driving a 1 kW
500 ml water heater; but the situation with an
inductive or, less commonly, capacitive load
is completely different. In this case we must
also check the reactive power: note that the
apparent power is always at least as great as
the true power. Among the most problem-
atic devices are electric motors, which can
exhibit high inrush currents that will trigger
the built-in overload protection circuitry on an
inadequately-rated inverter. An allowance of
100 % when running motors is not excessive
even for a high-quality inverter. Klaus’ 1 kW
inverter, shown in Figure 6, can comfortably
handle an electric drill and a water pump rated
at 450 W. It cost over €200/US$225/£170.

Wiring
As you may have surmised from the images so
far, the wiring between the solar panel, charge
controller, and battery is done using multi-
stranded wire with a 6 mm2 cross-section;
the connections to the 12 V cigarette lighter
sockets are not shown. The parallel connec-
tions between the batteries themselves are
made using 16 mm2 wire. The thicknesses
of wire used need to be appropriate for the
currents to be carried: this is not a good place
to try to save money.

The inverter is connected directly to the
battery using 16 mm2 wire to minimize losses.
A direct connection is only possible when the
inverter (like the one here) offers undervoltage
protection, switching off to protect the battery
from deep discharge. The inverter is only
enabled when the 230 V output is actually
required: its quiescent current consumption,
in the tens of milliamps, would otherwise be
an unnecessary waste of energy. The final
set-up is thus as shown in Figure 7.

Other Off-Grid Systems
The electricity supply in Klaus’ shed is a typical
example of an off-grid solar installation. Various
suppliers offer ready-to-go packages compris-
ing a solar panel, charge controller and inverter,
with various nominal power levels. If you decide
to opt for wind energy rather than solar, then
again suitable generators and charge control-
lers are available based on broadly the same
principles. For my part, last year I modified my
robot lawn mower for autonomous power [2].
This needed just a 50 W panel and a simple
PWM charge controller; no inverter was neces-

Figure 7: In Klaus’ installation the inverter is connected directly to the rechargeable
battery, and the 12 V output of the charge controller is provided with extra protection.

Figure 8: LiFePO4 batteries under test before
installation in Martin’s boat. (Source: Martin
Jepkens)

Figure 9: The foldable solar panel chosen by
both Martin and Detlev can be stored below
deck when underway. It is rated at 120 Wp.
(Source: Martin Jepkens)

Figure 10: Guide to installing the charge controller in Detlev’s boat.

lektor embedded world Special 2022 113

sary. Since then I upped the battery capacity
from 12 Ah to 30 Ah to help cover the periods
of rainy weather we have had. I have also
recently replaced the PWM charge control-
ler with a better (and more expensive) MPPT
controller, and the system can now generate
enough electricity to mow the lawn even late
into autumn.

There are of course many other applications
for off-grid power. Two of my other friends
have boats: Martin navigates his large steel-
hulled boat through the riverscapes of the
Netherlands, while Detlev makes mischief in
the Med in his sportsboat with a planing hull.
Both often spend days away from a harbour
or other mooring where electricity is avail-
able and therefore would like to have more
independence, especially as far as refrigera-
tion is concerned: not in this instance just for
beer, but for other sustenance as well. It would
be ecologically unfriendly, not to mention

inefficient, to run the engine frequently in
order to charge the on-board battery, and so
both have installed solar systems.

Now Martin is a smart engineer and doesn’t
need to rely on any advice from me. Never-
theless he discusses his ideas with me from
time to time. He was wondering whether the
generator on his boat could be overloaded
if he happened to connect a huge 200 Ah
LiFePO4 battery across it. The dangers of
such a course of action are explained in a
YouTube video [3]. Figure 8 shows how he
set up his batteries for capacity testing: he
decided on a battery with a LiFePO4 chemis-
try mainly because of their long cycle life, but
also because of their compactness compared
to lead-based batteries. In Martin’s boat the
on-board battery is separate from the starter
battery. In order to ease the burden on the
alternator, the batteries are each charged via
their own charge controller when the engine

is running. A 120 Wp foldable solar panel and
charge controller are also fitted for charging
when underway (see Figure 9).

Because of the lack of available space, a fixed
solar panel installation is not a practical propo-
sition on Detlev’s sportsboat. He therefore
decided to use the same type of solar panel
as Martin, although neither knew what the
other had chosen! Detlev is not an electronics
specialist, and at first he wanted to use his
extra 120 A on-board battery because it was
still rather new. I did some calculations for
him and advised him that using the cigarette
lighter socket on the ‘bridge’ of his vessel to
connect the solar panel was not a great idea
from a reliability point of view: I suggested
the use a a waterproof Neutrik connector
instead. I pre-wired the connector and drew
up an installation guide (Figure 10) for his
boatbuilder, so that the whole system could be
set up in harbour in Istria. The combination of

Advanced ML for
every solution

Try free at edgeimpulse.com

Advertisement

114 embedded world Special 2022 www.elektormagazine.com

foldable 120 Wp panel plus a Victron Energy
MPPT charge controller came to a total of
just under €500/US$550/£450. The charge
controller has a Bluetooth connection and
all parameters and graphs can be monitored
using a smartphone app.

The Semi-Off-Grid House
In these times of dwindling feed-in tariffs inter-
est has grown in a version of the fixed solar
installation that as far as possible dedicates
all of the generated energy to the demand of
the house. An array of, for example, 10 modern
solar panels will generate some 3.75 kWp; a
suitable MPPT solar charge controller could
then charge a LiFePO4 battery with a capac-
ity of say 6.5 kWh; and then a three-phase
inverter could be controlled using a current
monitoring circuit (the three ammeters
towards the bottom right of Figure 11) to
ensure that under no circumstances is any
electrical energy driven into the grid. All the
‘current’ is therefore locally used. With electric-
ity in Europe in 2022 costing around €0.35/
US$0.40/£0.30 per kWh this is a very attrac-
tive option: not only does it avoid having a
complex and also expensive grid-tied inverter
with integrated charging electronics for the

battery, it also avoids a large amount of
bureaucracy: not a negligible consideration!
(Note that such an arrangement may not be
legal in all countries.)

In the arrangement in Figure 11 the savings
from using the simplif ied design add
up to €1000/US$1150/£850 to €2000/
US$2300/£1700. It would take a few years
to make up for that using a feed-in tariff. The

most costly part of the system is the battery:
a 6.5 kWh LiFePO4 battery costs over €3000/
US$3400/£2600. With a guaranteed 6000
charging cycles at 90 % discharge depth that
means that around 36 MWh of energy will
have flowed via the battery, making the battery
cost around €0.09/US$0.10/£0.08 per kWh.
Furthermore, at that point the battery is still
not completely dead and so the effective cost
per kWh will be even lower. Over the life of the
battery a solution like this can save costs of
very roughly €13000/US$15000/£11000 using
energy one has generated locally. If an electric
vehicle is also charged (at a low charge rate)
then an installation of this kind can pay for
itself within a few years.

 210644-01

Contributors
Text and figures (unless otherwise stated):
Dr. Thomas Scherer
Editor: Jens Nickel
Translation: Mark Owen
Layout: Harmen Heida

Questions or Comments?
Feel free to send technical questions to
the Elektor editorial team by e-mail to
editor@elektor.com.

WEB LINKS

[1] T. Scherer, “Balcony Power Plant,” Elektor Magazine September/October 2021: www.elektormagazine.com/210326-01
[2] T. Scherer, “Solar Power for Mowing Robots,” Elektor Magazine July/August 2021: www.elektormagazine.com/200553-01
[3] Victron Energy, “How to not blow up your alternator when charging lithium,” YouTube: www.youtube.com/watch?v=jgoIocPgOug

RELATED PRODUCTS

 > PeakTech 4350 Clamp Meter (SKU 18161)
www.elektor.com/18161

 > Pokit Meter: Portable Multimeter, Oscilloscope and Logger (SKU 19854)
www.elektor.com/19854

 > PeakTech 3445 True RMS Digital Multimeter with Bluetooth (SKU 18774)
www.elektor.com/18774

Figure 11: Semi-off-grid solar installation for a house. The three-phase current
measurement controls the inverter in such a way that no electrical energy is driven into
the grid.

Join the
Elektor C mmunity

www.elektor.com/member

Also available

Elektor C mmunityElektor C mmunityElektor C mmunity

 The Elektor web archive from 1974!
 6x Elektor magazine (Print)
 9x Digital (PDF) including
Elektor Industry (EN) magazine

 A 10% discount in our web shop and
exclusive off ers

 Elektor’s annual DVD-ROM

 An online Elektor LABs account, with
access to more than 1000 Gerber fi les
and a direct line of communication with
our experts!
 Bring a project to publication or even sell
it in our shop

Take out a membership!

The Digital
membership!

GOLDGOLD
membe r s h i p

GREENGREEN
membe r s h i p

 Access to Elektor’s web archive
 10% discount in our web shop
 6x Elektor magazine (PDF)
 Exclusive off ers
 Access to more than 1000 Gerber fi les

membership!

Constraint Driven
Design

Flexible and scalable
rule system

Full support for design
rule rooms

Manufacturing
solder mask rules

Live display of
violation areas

Zone Inspector

Analyze plane coverage and
stitching

Grid view of plane
configurations

Edit plane settings and
draw order

Generate reports
from templates

Tables automatically
populate with design
data

Compliance status for
diff pairs and length
matched routes

Make custom
reports with data
object tables

Dedicated
Reporting
Module

Pre-Production
Checklist

Set of board tests
before Gerber Output

Includes placement,
connectivity and
clearance testing

Completely independant
code for clearance checks

PROTEUS
DESIGN SUITE

+44 (0)1756 753440
info@labcenter.com

Design Quality Assurance

