
ADF, IDF, and Other SDKs

ESP32 and ChatGPT

Home Automation With Espressif Chips

p. 18
ESP32-C3 Module Drives
a Dekatron

Interview:
Home Assistant Founder
Paulus Schoutsen

Flashing Your ESP32
Efficiently and Securelyp. 24 p. 30

230560-002

VBUS

VUSB

+3V3

+3V3

VBUS

+100V

R22 +50V

+400V

2nd Guides
1st GuidesCathode DCommon Cathode + A, B, C

Anode

+3V3
C14

1µ

100V

C13

1µ

100V

C12

1µ

250V

C11

1µ

250VC10

1µ

250V

C9

10µ
16V

C15

10µ
16V

+3V3

+50V

+100V

+200V

+400V

+3V3

VUSB

600mA

Q4

G

D

S
IPN70R750P7S

Q2

S8050

L2

470µHR12

68
0Ω

R9

10
k

R10
1k

R17

68
0k

R18

68
0k

R19

68
0k

R20

68
0k

R21

6k
8

R27

33
k

R28

33
k

R29

33
k

R30

33
k

D5

ES2J

D6

ES2J

D7

ES2J

IO19

IO18

IO10

3V3

IO4

IO5

IO6

IO7

IO8

IO9

GND

IO0

IO1

IO2

IO3

TXD

RXDEN

18

17

16

15

14

13

12

11
101

2
3

4
5

6
7

8
9

ESP32-C3-WROOM-02
U1

C2

10µ

R1

10
k

C1

1µ

R2

4k
7

R3

4k
7

R34

1k

SW1

R33

4k
7

R31 1k

R32

1k

D9

D8

J2
1

2
3

4
5

R15

18
0k

R16

18
0k

R24

18
0k

R26

18
0k

Q5

MMBTA92

R25

12
0k

12
0k

R23

6k
8

R6
1k

R7

22
0k

R8

22
0k

Q1

MMBTA42

R11
1k

R13

22
0k

R14

22
0k

Q3

MMBTA42

VBUS

SBU2

VBUS

VBUS

SBU1

VBUS

B12

GND

CC2

DP2

DN2

GND

GND

DN1

DP1

CC1

GND

A12

B1

B4

B5

B6

B7

B8

B9

A9

A8

A7

A6

A5

A4

A1

0

0

0

0

0

0

0

0

J1

D1

D1...D
4 = LESD5D5.0CT1G

D2

D3

D4

VC
ON

N

VC
ON

N

INT_N
VBUS

CC1

CC2

VD
D

GN
D

SDA

SCL

10

12
13

2

1

3

8

7

6

5

FUSB302B01MPX
U3

C7

1µ

C3

200pC4

200p

VIN

GN
D

BS

EN

SW

FB
1

5

4
2

6

3

MT2492U2

C6

10µ

C18

10µ

C16

10µ

L1

WCH0420-4µ7
C17

22n

R5

27
k

R4

12
0k

Special edition
guest-edited by

Fusing
ChatGPT
With Espressif
SOCs

Two-Factor
Authentication
Dongle Based
on the ESP32-C3

p. 4

p. 14

* S INC E 1 961 *

DEC. 2023 & JAN. 2024
ELEKTORMAGAZINE.COM

WK
01

Declassified
Bonus Edition!

Bonus articles for Pros, Makers,
and Students!

COLOPHON EDITORIAL

Over the course of several months, Elektor’s
content team worked closely with Espressif to
create in-depth articles about a variety of exciting
topics. All the hard work resulted in an Espressif
guest-edited edition of Elektor Mag, which we
published in early December 2023. But, we’re
not !nished collaborating. This bonus edition of
Elektor Mag is packed with additional projects
and tutorials that will keep you inspired for
months to come.

In typical Elektor fashion, this bonus edition
has something for everyone, from professional
engineers interested in developing AIoT products

to makers looking for creative weekend projects.
Elektor and Espressif o"er tips for implement-
ing ChatGPT with Espressif SOCs, a fun Dekat-
ron project, advice for building IoT apps without
software expertise, and much more. Enjoy!

When you start your next Espressif-related
project, please share your experience with the
community on the Elektor Labs online platform
at elektormagazine.com/labs — we look forward
to seeing what you create!

C. J. Abate (Content Director, Elektor)

Volume 49, BONUS EDITION
December 2023 & January 2024
ISSN 0932-5468

Elektor Magazine is published 8 times a year by
Elektor International Media b.v.
PO Box 11, 6114 ZG Susteren, The Netherlands
Phone: +31 46 4389444
www.elektor.com | www.elektormagazine.com

For all your questions
service@elektor.com

Become a Member
www.elektormagazine.com/membership

Advertising & Sponsoring
Büsra Kas
Tel. +49 (0)241 95509178
busra.kas@elektor.com
www.elektormagazine.com/advertising

Copyright Notice
© Elektor International Media b.v. 2023

The circuits described in this magazine are
for domestic and educational use only. All
drawings, photographs, printed circuit board
layouts, programmed integrated circuits,
digital data carriers, and article texts published
in our books and magazines (other than
third-party advertisements) are copyright
Elektor International Media b.v. and may not
be reproduced or transmitted in any form
or by any means, including photocopying,
scanning and recording, in whole or in part
without prior written permission from the
Publisher. Such written permission must also
be obtained before any part of this publication
is stored in a retrieval system of any nature.
Patent protection may exist in respect of
circuits, devices, components etc. described
in this magazine. The Publisher does not
accept responsibility for failing to identify such
patent(s) or other protection. The Publisher
disclaims any responsibility for the safe and
proper function of reader-assembled projects
based upon or from schematics, descriptions
or information published in or in relation with
Elektor magazine.

Print
Senefelder Misset, Mercuriusstraat 35,
7006 RK Doetinchem, The Netherlands

Distribution
IPS Group, Carl-Zeiss-Straße 5
53340 Meckenheim, Germany
Phone: +49 2225 88010

International Editor-in-Chief
Jens Nickel

Content Director
C. J. Abate

Publisher
Erik Jansen

THIS EDITION
4 Unleashing the Power of OpenAI and ESP-BOX

A Guide to Fusing ChatGPT with Espressif SOCs

14 ESP-Unlock
A Two-Factor Authentication Dongle
Based on the ESP32-C3

18 Dekatron

A Piece of History Comes Back to Life!

24 The Smart Home Revolution
Paulus Schoutsen on Home Assistant, ESPHome, and More

30 Burn, Firmware, Burn!

Flashing your ESP32

36 From Rockets to Cellos

Practical Applications and Considerations
When Creating Wirelessly Enabled Solutions

40 Secure IoT Manufacturing

Why and How

44 A Simpler and More Convenient Life

46 How to Build IoT Apps Without Software Expertise

48 A Value-Added Distributor for IoT and More

50 Quick & Easy IoT Development with M5Stack

52 Building a Smart User Interface on ESP32

54 Get Your Hands on New Espressif Products

Declassified Bonus Edition

lektorX

Guest edited by 3

The world is witnessing a technological revolution, and OpenAI is at
the forefront of this change. One of its most exciting innovations is
ChatGPT, which utilizes natural language processing to create more
engaging and intuitive user experiences. The integration of OpenAI
APIs with IoT devices has opened up a world of possibilities.

This article is structured into three primary sections, each cover-
ing essential aspects of the project. The first section delves into the
ESP-BOX development platform, providing details on its features and
functionalities. The second section is a case study that outlines the
steps involved in building the project from scratch. The final section
provides a list of additional sources of information that readers can
explore to deepen their knowledge and understanding of the project.

ESP-BOX
The ESP-BOX [1] is a next-generation AIoT development platform
that includes the ESP32-S3-BOX and ESP32-S3-BOX-Lite develop-
ment boards. These boards are based on the ESP32-S3 [2] Wi-Fi +
Bluetooth 5 (LE) SoC and provide a flexible and customizable solution
for developing AIoT applications that integrate with various sensors,
controllers, and gateways.

PROJECT

By Ali Hassan Shah, Espressif

Let’s explore the potential
of ChatGPT with ESP-BOX, a

development platform consisting
of microphone-equipped boards
and a vast software ecosystem for

speech recognition and more.
This forms a powerful

combination that can take IoT
devices to the next level!

Unleashing the Power of
OpenAI and ESP-BOX

A Guide to Fusing ChatGPT with Espressif SOCs

4 www.elektormagazine.com

 development framework, ESP-RainMaker, providing develop-
ers with all the tools they need to create powerful and intelligent
devices.

 > Pmod compatible headers support expand peripheral
modules: The ESP-BOX features Pmod compatible headers,
making it easy to expand its capabilities with a wide range of
peripheral modules.

Case Study
This case study outlines the development process for a voice-controlled
chatbot that utilizes the combination of ESP-BOX and OpenAI API. The
system is capable of receiving speech commands from users, display-
ing them on the screen, and processing them through the OpenAI
APIs to generate a response. The response is then displayed on the
screen and played through the ESP-BOX. The step-by-step workflow
provides a detailed explanation of how to integrate these technolo-
gies to create an e"icient and e"ective voice-controlled chatbot (see
Figure 2 and Figure 3).

Environment Setup
Setting up a suitable environment and installing the correct version is
critical to avoid errors. In this demonstration, we’ll be utilizing ESP-IDF
version 5.0 (master branch). If you need guidance on how to set up
ESP-IDF, please refer to the o"icial IDF Programming guide [3] for
detailed information. As of writing of this article, the current IDF commit
head is df9310ada2.

To utilize ChatGPT, a powerful language model based on the
GPT-3.5 architecture, you must first obtain a secure API key. This can
be achieved by creating an account on the OpenAI platform [4] and
obtaining tokens through creation or purchase. With an API key, you
gain access to a wide range of features and capabilities that can be

The ESP-BOX (Figure 1) is packed with a wide range of features that
make it an ideal AIoT development platform. Let’s take a closer look
at some of the key features.

 > Far-field voice interaction with 2 mics: The ESP-BOX supports
far-field voice interaction with two microphones, allowing users
to interact with their devices from a distance.

 > O"line speech commands recognition in Chinese and English
languages with high recognition rate: The ESP-BOX o"ers
o"line speech commands recognition in both Chinese and
English languages with a high recognition rate, making it easy to
develop voice-enabled devices.

 > Reconfigurable 200+ speech commands in Chinese and
English languages: Developers can easily reconfigure over
200 speech commands in Chinese and English languages
according to their needs.

 > Continuous Identification and Wakeup Interrupt: The
ESP-BOX supports continuous identification and wakeup inter-
rupt, ensuring that devices are always ready to receive voice
commands.

 > Flexible and reusable GUI framework: The ESP-BOX comes
with a flexible and reusable GUI framework, allowing developers
to create custom user interfaces for their applications.

 > End-to-end AIoT development framework ESP-RainMaker:
The ESP-BOX is built on Espressif ’s end-to-end AIoT/IoT

Figure 1: ESP32-S3-BOX.

Figure 2: Workflow of the case study. Figure 3: Demo of ESP-BOX as a chatbot.

Guest edited by 5

This code is a function named create_whisper_request_from_
record(), which takes in a pointer to a bu"er containing the audio
data and an integer audio_len that represents the length of the audio
data. This function sends a POST request to the OpenAI API endpoint
to transcribe the given audio data.

The function starts by initializing the URL of the OpenAI API and setting
the authorization headers with the bearer token OPENAI_API_KEY.
Then, an HTTP client is configured and initialized with the provided
configuration, including the URL, HTTP method, event handler, bu"er
size, timeout, and SSL certificate.

After that, the content type and the boundary string for the multipart
form-data request are set as headers to the HTTP client. The file data
and its size are also set, and a multipart/form-data request is built.
The form_data bu"er is allocated with a malloc() function, and the
necessary information is added to it. This includes the filename and
Content-Type of the audio file, the file contents, and the name of the
model that will be used for transcription.

Once the form_data is built, it is set as the post field in the HTTP client,
and the client sends the POST request to the OpenAI API endpoint. If
there is an error during the request, the function logs an error message.
Finally, the HTTP client is cleaned up, and the resources allocated for
form_data are freed.

The function returns an esp_err_t error code, which indicates whether
the HTTP request was successful or not.

customized to meet your specific needs, such as natural language
processing and generation, text completion, and conversation model-
ing. Follow the o"icial API reference link [5]. It goes without saying that
maintaining the confidentiality and security of the API key is crucial to
prevent unauthorized access to the user’s account and data.

Adding O!line Speech Recognition
Espressif Systems has developed an innovative speech recognition
framework called ESP-SR [6]. This framework is designed to enable
devices to recognize spoken words and phrases without relying on
external cloud-based services, making it an ideal solution for o"line
speech recognition applications.

ESP-SR framework consists of various modules, including the Audio
Front-end (AFE), Wake Word Engine (WakeNet), Speech Command
Word Recognition (MultiNet), and Speech Synthesis (which currently
only supports the Chinese language). Follow the o"icial Documenta-
tion [7] for more information.

Integrating OpenAI API
The OpenAI API provides numerous functions that developers can
leverage to enhance their applications. In our project, we utilized the
Audio-to-Text and Completion APIs and implemented them using
C-language code based on ESP-IDF. The following section provides
a brief overview of the code we employed.

Audio to Text
To extract text from audio, we utilize HTTPS and the OpenAI Audio API.
The following code is used for this task. (Listing 1)

Listing 1: Extracting Text from Audio.
esp_err_t create_whisper_request_from_record(uint8_t *audio, int audio_len)
{
 // Set the authorization headers
 char url[128] = "https://api.openai.com/v1/audio/transcriptions";
 char headers[256];
 snprintf(headers, sizeof(headers), "Bearer %s", OPENAI_API_KEY);
 // Configure the HTTP client
 esp_http_client_config_t config = {
 .url = url,
 .method = HTTP_METHOD_POST,
 .event_handler = response_handler,
 .buffer_size = MAX_HTTP_RECV_BUFFER,
 .timeout_ms = 60000,
 .crt_bundle_attach = esp_crt_bundle_attach,
 };
 // Initialize the HTTP client
 esp_http_client_handle_t client = esp_http_client_init(&config);

6 www.elektormagazine.com

The integration of OpenAI’s ChatGPT with
Espressif ’s ESP-BOX has opened up new

possibilities for creating powerful and intelligent
IoT devices.

 // Set the headers
 esp_http_client_set_header(client, "Authorization", headers);
 // Set the content type and the boundary string
 char boundary[] = "boundary1234567890";
 char content_type[64];
 snprintf(content_type, sizeof(content_type), "multipart/form-data; boundary=%s", boundary);
 esp_http_client_set_header(client, "Content-Type", content_type);
 // Set the file data and size
 char *file_data = NULL;
 size_t file_size;
 file_data = (char *)audio;
 file_size = audio_len;
 // Build the multipart/form-data request
 char *form_data = (char *)malloc(MAX_HTTP_RECV_BUFFER);
 assert(form_data);
 ESP_LOGI(TAG, "Size of form_data buffer: %zu bytes", sizeof(*form_data) * MAX_HTTP_RECV_BUFFER);
 int form_data_len = 0;
 form_data_len += snprintf(form_data + form_data_len, MAX_HTTP_RECV_BUFFER - form_data_len,
 "--%s\r\n"
 "Content-Disposition: form-data; name=\"file\"; filename=\"%s\"\r\n"
 "Content-Type: application/octet-stream\r\n"
 "\r\n", boundary, get_file_format(file_type));
 ESP_LOGI(TAG, "form_data_len %d", form_data_len);
 ESP_LOGI(TAG, "form_data %s\n", form_data);
 // Append the audio file contents
 memcpy(form_data + form_data_len, file_data, file_size);
 form_data_len += file_size;
 ESP_LOGI(TAG, "Size of form_data: %zu", form_data_len);
 // Append the rest of the form-data
 form_data_len += snprintf(form_data + form_data_len, MAX_HTTP_RECV_BUFFER - form_data_len,
 "\r\n"
 "--%s\r\n"
 "Content-Disposition: form-data; name=\"model\"\r\n"
 "\r\n"
 "whisper-1\r\n"
 "--%s--\r\n", boundary, boundary);
 // Set the headers and post field
 esp_http_client_set_post_field(client, form_data, form_data_len);
 // Send the request
 esp_err_t err = esp_http_client_perform(client);
 if (err != ESP_OK) {
 ESP_LOGW(TAG, "HTTP POST request failed: %s\n", esp_err_to_name(err));
 }
 // Clean up client
 esp_http_client_cleanup(client);
 // Return error code
 return err;
}

Guest edited by 7

In case of HTTP_EVENT_ON_FINISH, the function prints a message
indicating that the HTTP exchange has finished, and then calls the
parsing_data() function to process the accumulated/raw data. It
then frees the memory and resets the data and data_len variables
to zero. Finally, the function returns ESP_OK indicating that the opera-
tion was successful.

Parsing Raw Data
The JSON parser component [9] is utilized to parse the raw response
obtained from ChatGPT API and Whisper AI API over HTTPS. To
perform this task, a function is used, which employs the parser compo-
nent. Further details about this tool can be found on GitHub [10].
(Listing 4)

Integrating TTS API
At the moment, OpenAI doesn’t o"er public access to their Text-to-
Speech (TTS) API. However, there are various other TTS APIs available,
including Voicerss [11], TTSmaker [12], and TalkingGenie [13]. These
APIs can generate speech from text input, and you can find more
information about them on their respective websites.

For the purposes of this tutorial, we will be using the TalkingGenie API,
which is one of the best options available for generating high-quality,

Chat Completion
The OpenAI Chat Completion API [8] is utilized to send HTTPS requests
for chat completion. This process involves utilizing the create_
chatgpt_request() function, which takes in a content parameter
representing the input text to the GPT-3.5 model. (Listing 2)

The function first sets up the URL, model, and headers needed for
the HTTP POST request, and then creates a JSON payload with the
model, max tokens, and content. Next, the function sets the headers
for the HTTP request and sets the JSON payload as the post field for
the request. The HTTP POST request is then sent using esp_http_
client_perform(), and if the request fails, an error message is logged.
Finally, the HTTP client is cleaned up, and the error code is returned.

Handling Response
The callback function response_handler() is used by the ESP-IDF
HTTP client library to handle events that occur during an HTTP request/
response exchange. (Listing 3)

In case of HTTP_EVENT_ON_DATA, the function allocates memory for
the incoming data, copies the data into the bu"er and increments
the data_len variable accordingly. This is done to accumulate the
response data.

Listing 2: HTTPS request for chat completion.
esp_err_t create_chatgpt_request(const char *content)
{
 char url[128] = "https://api.openai.com/v1/chat/completions";
 char model[16] = "gpt-3.5-turbo";
 char headers[256];
 snprintf(headers, sizeof(headers), "Bearer %s", OPENAI_API_KEY);
 esp_http_client_config_t config = {
 .url = url,
 .method = HTTP_METHOD_POST,
 .event_handler = response_handler,
 .buffer_size = MAX_HTTP_RECV_BUFFER,
 .timeout_ms = 30000,
 .cert_pem = esp_crt_bundle_attach,
 };
 // Set the headers
 esp_http_client_handle_t client = esp_http_client_init(&config);
 esp_http_client_set_header(client, "Content-Type", "application/json");
 esp_http_client_set_header(client, "Authorization", headers);
 // Create JSON payload with model, max tokens, and content
 snprintf(json_payload, sizeof(json_payload), json_fmt, model, MAX_RESPONSE_TOKEN, content);
 esp_http_client_set_post_field(client, json_payload, strlen(json_payload));
 // Send the request
 esp_err_t err = esp_http_client_perform(client);
 if (err != ESP_OK) {
 ESP_LOGW(TAG, "HTTP POST request failed: %s\n", esp_err_to_name(err));
 }
 // Clean up client
 esp_http_client_cleanup(client);
 // Return error code
 return err;
}

8 www.elektormagazine.com

Listing 3: Handle events during an HTTP request/response exchange.
esp_err_t response_handler(esp_http_client_event_t *evt)
{
 static char *data = NULL; // Initialize data to NULL
 static int data_len = 0; // Initialize data to NULL
 switch (evt->event_id) {
 case HTTP_EVENT_ERROR:
 ESP_LOGI(TAG, "HTTP_EVENT_ERROR");
 break;
 case HTTP_EVENT_ON_CONNECTED:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_CONNECTED");
 break;
 case HTTP_EVENT_HEADER_SENT:
 ESP_LOGI(TAG, "HTTP_EVENT_HEADER_SENT");
 break;
 case HTTP_EVENT_ON_HEADER:
 if (evt->data_len) {
 ESP_LOGI(TAG, "HTTP_EVENT_ON_HEADER");
 ESP_LOGI(TAG, "%.*s", evt->data_len, (char *)evt->data);
 }
 break;
 case HTTP_EVENT_ON_DATA:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_DATA (%d +)%d\n", data_len, evt->data_len);
 ESP_LOGI(TAG, "Raw Response: data length: (%d +)%d: %.*s\n", data_len,
 evt->data_len, evt->data_len, (char *)evt->data);

 // Allocate memory for the incoming data
 data = heap_caps_realloc(data, data_len + evt->data_len + 1,
 MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
 if (data == NULL) {
 ESP_LOGE(TAG, "data realloc failed");
 free(data);
 data = NULL;
 break;
 }
 memcpy(data + data_len, (char *)evt->data, evt->data_len);
 data_len += evt->data_len;
 data[data_len] = ’\0’;
 break;
 case HTTP_EVENT_ON_FINISH:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_FINISH");
 if (data != NULL) {
 // Process the raw data
 parsing_data(data, strlen(data));
 // Free memory
 free(data);
 data = NULL;
 data_len = 0;
 }
 break;
 case HTTP_EVENT_DISCONNECTED:
 ESP_LOGI(TAG, "HTTP_EVENT_DISCONNECTED");
 break;
 default:
 break;
 }
 return ESP_OK;
}

Guest edited by 9

Next, the function determines the size of the url bu"er needed to
make a GET request to the TalkingGenie API, and allocates memory
for the url bu"er accordingly. It then formats the url string with the
appropriate parameters, including the voiceId (which specifies the
voice to be used), the encoded text, the speed and volume of the
speech, and the audiotype (either MP3 or WAV).

The function then sets up an esp_http_client_config_t struct with
the url and other configuration parameters, initializes an esp_http_
client_handle_t with the struct, and performs a GET request to the
TalkingGenie API using esp_http_client_perform(). If the request
is successful, the function returns ESP_OK, otherwise it returns an error
code. Finally, the function frees the memory allocated for the url
bu"er and the encoded message, cleans up the esp_http_client_
handle_t, and returns the error code.

Handling TTS Response
In the similar fashion, callback function http_event_handler() is
defined to handle events that occur during an HTTP request/response
exchange. (Listing 6)

natural-sounding speech both in English and Chinese. One of the
unique features of TalkingGenie is its ability to translate mixed language
text, such as Chinese and English, into speech seamlessly. This can be
a valuable tool for creating content that appeals to a global audience.
The following code sends a text response generated by ChatGPT
to the TalkingGenie API using HTTPS, and then plays the resulting
speech through an ESP-BOX. (Listing 5)

The function text_to_speech() takes a message string and an AUDIO_
CODECS_FORMAT parameter as input. The message string is the text
that will be synthesized into speech, while the AUDIO_CODECS_FORMAT
parameter specifies whether the speech should be encoded in MP3
or WAV format.

The function first encodes the message string using url_encode()
function that replaces some non-valid characters to its ASCII code,
and then converts that code to a two-digit hexadecimal representa-
tion. Next, it allocates memory for the resulting encoded string. It then
checks the AUDIO_CODECS_FORMAT parameter and sets the appropri-
ate codec format string to be used in the url.

Listing 4: Parsing the raw response obtained from ChatGPT API and Whisper AI API.
void parse_response (const char *data, int len)
{
 jparse_ctx_t jctx;
 int ret = json_parse_start(&jctx, data, len);
 if (ret != OS_SUCCESS) {
 ESP_LOGE(TAG, "Parser failed");
 return;
 }
 printf("\n");
 int num_choices;
 /* Parsing Chat GPT response*/
 if (json_obj_get_array(&jctx, "choices", &num_choices) == OS_SUCCESS) {
 for (int i = 0; i < num_choices; i++) {
 if (json_arr_get_object(&jctx, i) == OS_SUCCESS &&
 json_obj_get_object(&jctx, "message") == OS_SUCCESS &&
 json_obj_get_string(&jctx, "content", message_content,
 sizeof(message_content)) == OS_SUCCESS) {
 ESP_LOGI(TAG, "ChatGPT message_content: %s\n", message_content);
 }
 json_arr_leave_object(&jctx);
 }
 json_obj_leave_array(&jctx);
 }
 /* Parsing Whisper AI response*/
 else if (json_obj_get_string(&jctx, "text", message_content,
 sizeof(message_content)) == OS_SUCCESS) {
 ESP_LOGI(TAG, "Whisper message_content: %s\n", message_content);
 } else if (json_obj_get_object(&jctx, "error") == OS_SUCCESS) {
 if (json_obj_get_string(&jctx, "type", message_content,
 sizeof(message_content)) == OS_SUCCESS) {
 ESP_LOGE(TAG, "API returns an error: %s", message_content);
 }
 }
}

10 www.elektormagazine.com

Listing 5: Text to Speech.
esp_err_t text_to_speech_request(const char *message, AUDIO_CODECS_FORMAT code_format)
{
 int j = 0;
 size_t message_len = strlen(message);
 char *encoded_message;
 char *language_format_str, *voice_format_str, *codec_format_str;
 // Encode the message for URL transmission
 encoded_message = heap_caps_malloc((3 * message_len + 1), MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
 url_encode(message, encoded_message);
 // Determine the audio codec format
 if (AUDIO_CODECS_MP3 == code_format) {
 codec_format_str = "MP3";
 } else {
 codec_format_str = "WAV";
 }
 // Determine the required size of the URL bu
 int url_size = snprintf(NULL, 0,
 "https://dds.dui.ai/runtime/v1/synthesize?voiceId=%s&text=%s&speed=1&volume=%d&audiotype=%s", \
 VOICE_ID, \
 encoded_message, \
 VOLUME, \
 codec_format_str);
 // Allocate memory for the URL buffer
 char *url = heap_caps_malloc((url_size + 1), MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
 if (url == NULL) {
 ESP_LOGE(TAG, "Failed to allocate memory for URL");
 return ESP_ERR_NO_MEM;
 }
 // Format the URL string
 snprintf(url, url_size + 1,
 "https://dds.dui.ai/runtime/v1/synthesize?voiceId=%s&text=%s&speed=1&volume=%d&audiotype=%s", \
 VOICE_ID, \
 encoded_message, \
 VOLUME, \
 codec_format_str);
 // Configure the HTTP client
 esp_http_client_config_t config = {
 .url = url,
 .method = HTTP_METHOD_GET,
 .event_handler = http_event_handler,
 .buffer_size = MAX_FILE_SIZE,
 .buffer_size_tx = 4000,
 .timeout_ms = 30000,
 .crt_bundle_attach = esp_crt_bundle_attach,
 };
 // Initialize and perform the HTTP request
 esp_http_client_handle_t client = esp_http_client_init(&config);
 esp_err_t err = esp_http_client_perform(client);
 if (err != ESP_OK) {
 ESP_LOGE(TAG, "HTTP GET request failed: %s", esp_err_to_name(err));
 }
 // Free allocated memory and clean up the HT
 heap_caps_free(url);
 heap_caps_free(encoded_message);
 esp_http_client_cleanup(client);
 // Return the result of the function call
 return err;
}

Guest edited by 11

Don’t forget to check out Espressif [18] Systems’ GitHub repository
[19] for more open-source demos on ESP-IoT-Solution [20], ESP-SR,
and ESP-BOX. The source code for this project will be found at GitHub
[21]. As part of our future plans, we aim to introduce a component for
the OpenAI API that will o"er user-friendly functions.

230462-01

Questions or Comments?
If you have technical questions or comments about this article, feel
free to contact the author at ali.shah@espressif.com or the Elektor
editorial team by email at editor@elektor.com.

About the Author
Ali Hassan Shah is an embedded software
engineer, driven by a deep passion for IoT
technology. As an esteemed member of Espres-
sif Systems’s Application Engineering team, he
channels his expertise into the mission of render-

ing technology e"ortlessly accessible and user-friendly for all, guided
by the motto, “Simplifying Technology for All.”

 Related Products
 > ESP32-S3-BOX
www.elektor.com/20627

HTTP_EVENT_ON_DATA event is used to handle the audio data received
from the server. The audio data is stored in a bu"er called record_
audio_buffer and the total length of the audio data received is stored
in a variable called file_total_len. If the total length of the audio
data received is less than a predefined MAX_FILE_SIZE, the data is
copied into the record_audio_buffer.

Finally, the HTTP_EVENT_ON_FINISH event is used to handle the end of
the HTTP response. In this case, the record_audio_buffer is passed
to a function called audio_player_play(), which plays the audio.

Display
For display, we use LVGL, an open-source embedded graphics library
that is gaining popularity for its powerful and visually appealing features
and low memory footprints. LVGL has also released a visual drag-and-
drop UI editor called SquareLine Studio [14]. It’s a powerful tool that
makes it easy to create beautiful GUIs for your applications.

To integrate LVGL with your project, Espressif Systems provides an
o"icial package manager tool [15]. This tool allows you to directly
add LVGL and related porting components to your project, saving
you time and e"ort. For more information follow the o"icial blogs [16]
and documentations [17].

Create Intelligent IoT Devices
The integration of OpenAI’s ChatGPT with Espressif ’s ESP-BOX has
opened up new possibilities for creating powerful and intelligent IoT
devices. The ESP-BOX provides a flexible and customizable AIoT devel-
opment platform with features like far-field voice interaction, o"line
speech commands recognition, and a reusable GUI framework. By
combining these capabilities with the OpenAI API, developers can
create voice-controlled chatbots and enhance user experiences in
IoT applications.

Listing 6: Handling TTS Response.
static esp_err_t http_event_handler(esp_http_client_event_t *evt)
{
 switch (evt->event_id) {
 // Handle errors that occur during the HTTP request
 case HTTP_EVENT_ERROR:
 ESP_LOGE(TAG, "HTTP_EVENT_ERROR");
 break;
 // Handle when the HTTP client is connected
 case HTTP_EVENT_ON_CONNECTED:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_CONNECTED");
 break;
 // Handle when the header of the HTTP request is sent
 case HTTP_EVENT_HEADER_SENT:
 ESP_LOGI(TAG, "HTTP_EVENT_HEADER_SENT");
 break;

12 www.elektormagazine.com

[1] ESP-Box: https://github.com/espressif/esp-box
[2] ESP32-S3 product selector: https://tinyurl.com/esp32s3prodsel
[3] IDF Programming guide: https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32/index.html
[4] OpenAI platform: https://openai.com
[5] Official API reference link: https://platform.openai.com/docs/api-reference
[6] ESP-SR: https://github.com/espressif/esp-sr
[7] ESP-SR User Guide: https://docs.espressif.com/projects/esp-sr/en/latest/esp32/index.html
[8] Chat Completion API: https://platform.openai.com/docs/api-reference/chat/create
[9] JSON parser: https://components.espressif.com/components/espressif/json_parser
[10] GitHub parser: https://github.com/espressif/json_parser
[11] Voicerss: https://voicerss.org/api
[12] TTSmaker: https://ttsmaker.com/zh-cn
[13] TalkingGenie: https://talkinggenie.com
[14] SquareLine Studio: https://squareline.io
[15] Official package manager tool for LVGL: https://components.espressif.com/components/lvgl/lvgl
[16] Blog about LVGL: https://tinyurl.com/espfancyui
[17] Documentation of LVGL: https://docs.lvgl.io/master/index.html
[18] Espressif Systems: https://espressif.com
[19] Espressif Systems’ GitHub repository: https://github.com/orgs/espressif/repositories
[20] ESP-IoT-Solution: https://github.com/espressif/esp-iot-solution
[21] Source code for this project: https://github.com/espressif/esp-box/tree/master/examples

WEB LINKS

 // Handle when the header of the HTTP response is received
 case HTTP_EVENT_ON_HEADER:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_HEADER");
 file_total_len = 0;
 break;
 // Handle when data is received in the HTTP response
 case HTTP_EVENT_ON_DATA:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_DATA, len=%d", evt->data_len);
 if ((file_total_len + evt->data_len) < MAX_FILE_SIZE) {
 memcpy(record_audio_buffer + file_total_len, (char *)evt->data, evt->data_len);
 file_total_len += evt->data_len;
 }
 break;
 // Handle when the HTTP request finishes
 case HTTP_EVENT_ON_FINISH:
 ESP_LOGI(TAG, "HTTP_EVENT_ON_FINISH:%d, %d K", file_total_len, file_total_len / 1024);
 audio_player_play(record_audio_buffer, file_total_len);
 break;
 // Handle when the HTTP client is disconnected
 case HTTP_EVENT_DISCONNECTED:
 ESP_LOGI(TAG, "HTTP_EVENT_DISCONNECTED");
 break;
 // Handle when a redirection occurs in the HTTP request
 case HTTP_EVENT_REDIRECT:
 ESP_LOGI(TAG, "HTTP_EVENT_REDIRECT");
 break;
 }
 return ESP_OK;
}

Guest edited by 13

with a low budget to use it, and it also allows
owning multiple hardware tokens for di!erent
purposes or to back each other up without the
owner getting poor.

How Hardware Tokens Work
You might wonder: how can the online
service distinguish your hardware token
from any other token? The answer is that
the hardware token is actually “smart” as it
contains a small microprocessor and some
storage. While setting up the hardware token
as your online service authenticator, you
obtain a cryptographic key from the online
service, which is written to the storage (more
details on that later). The key is then used
to prove the hardware token’s authenticity.
You can imagine it as another password that
the hardware token remembers to log into
the online service. However, the way you use
this kind of hardware token is very similar to
using a physical key. If you use a smartphone
authenticator app instead, it will save the key
somewhere on your smartphone, but the
principles explained here will be the same.

One standard for two-factor authenti-
cation is the widely used time-based
one-time password (TOTP) standard [1]. TOTP
is based on one-time Passwords (OTP), created
from a cryptographic key and the current
wall clock time, hence the name time-based
one-time password. The key is shared between
the online service and the hardware token. A
hash function creates a numeric 6-digit OTP
from the key and the current time. The online
service does the same calculation with its own
copy of the key and the current time. The OTP
calculated by the hardware token is sent to the
online service, which compares this OTP with

Imagine you are a cybercriminal, and you have
gained access to your victim’s username and
password for a random online service. Now
you try to log in. It works! But then the online
service asks you for a “verification code”.
Why? Because that online service provides
two-factor authentication, and your victim has
enabled it.

Two-factor authentication — common
acronyms are 2FA, TFA, or MFA — basically
means that you need an additional step
to authenticate yourself against an online
service. You not only authenticate yourself by
something you know, but also by something
you possess. In practice, this additional step
often involves a hardware device that you have
access to. A good example is withdrawing
money from an ATM, where you need a PIN
(knowledge) and your debit card (possession).
Only knowing the PIN or possessing the card is
not enough to access a victim’s bank account.

But it is not only banks that use two- factor
authentication. Many online services
nowadays provide two-factor authentica-

tion, too. Unlike banks, they do not give out
bank cards. Instead, you can use a smart-
phone authenticator app or an o!-the-shelf
electronic device, which we will call “hardware
token” from now on. You would still need to
remember your normal credentials to authenti-
cate yourself (knowledge), but you would also
be required to use your smartphone authen-
ticator app or hardware token (possession).

The smartphone authenticator app is proba-
bly the most popular choice, since virtually
everyone has a smartphone. But what about a
backup if your phone gets stolen? How about
separation of work accounts from your private
phone? What if the phone ran out of power?
Or simply, what if fishing your bathroom-tile-
size flagship smartphone out of your pocket
is too tedious?

This is where hardware tokens come in handy.
They not only eliminate your dependency on
a smartphone, but they can also be made
small and cheap. A small hardware token can
always be carried around in various situations.
A cheap hardware token enables more people

PROJECT

By Jakob Hasse, Espressif

Many online services nowadays provide two-factor
authentication. The smartphone authenticator
app is probably the most popular choice, but a
smartphone can be stolen, and often private and
business matters are mixed. This is where USB-
stickshaped hardware tokens are useful. In this
project, such a token is realized based on a cheap
ESP32-C3 board.

ESP-Unlock
A Two-Factor Authentication Dongle Based on the ESP32-C3

14 www.elektormagazine.com

ease debugging. A service name in the request
message is necessary since the hardware
token works with multiple online services,
requiring one key per service. The example
request in Figure 1 is:

TOTP:github,1690975870

where TOTP: and the newline character at
the end are delimiters for parsing, github is
the service name of the key to choose and
1690975870 is the current UNIX time, format-
ted as a decimal number. The corresponding
response message in Figure 1 is:

TOTP:123456

where TOTP: and the newline are delimiters
again and 123456 is the OTP. For more infor-
mation about this protocol and the additional
messages to list service names and add
new sets of key and service names, visit the
project’s repository [3].

Hardware
As a small size was a paramount require-
ment for the hardware, the printed circuit
board (PCB) for the ESP-Unlock only contains
necessary components: an ESP32-C3-
WROOM module (without antenna), corre-
sponding bootstrap circuitry, power supply
(3.3 V from the USB 5 V supply), two LEDs,
and a USB-A connector to plug it into a
computer. There is also a footprint for an

software, then discuss some considerations
about security and finally see how to use the
ESP-Unlock.

Project Architecture
To calculate and display the OTP, you need
the hardware token itself, called ESP-Unlock,
as well as a host computer that has a USB-A
port. The ESP-Unlock stores the keys to gener-
ate OTPs for various online services. The host
provides the current wall clock time via its
real-time clock. Communication between the
two is realized as serial communication over
USB, using the USB-serial peripheral of the
ESP32-C3.

Calculating an OTP needs four steps (see
Figure 1):

1. The host computer acquires the current wall
clock time, from its own real-time clock.

2. The host computer requests OTP calcula-
tion towards the ESP-Unlock.

3. The ESP-Unlock uses the appropriate key
to calculate the OTP.

4. The ESP-Unlock sends the OTP back in a
result message.

The communication (see steps 2 and 4 in
Figure 1) between the host and ESP-Unlock
consists of a fairly simple request-response
protocol with the host always acting as initi-
ator, while the ESP-Unlock only ever answers
requests. All messages are sent as plaintext to

the OTP calculated from its own copy of the
key. Only if the two OTPs match is the user is
authenticated successfully. During the OTP
calculation, a hash function is used to ensure
that the original key is not compromised when
transferring it from the hardware token to the
online service. For more information on the
TOTP standard, please refer to [1].

ESP-Unlock Hardware Token
Since two-factor authentication hardware
tokens are so practical and the TOTP standard
is widely used and easy to implement, I
created the “ESP-Unlock:” An open-source
TOTP-compatible two-factor authentication
hardware token.

I chose the fairly inexpensive ESP32-C3 chip
for the hardware token because I am familiar
with the chip and the Espressif IoT Develop-
ment Framework (ESP-IDF) [2], which can be
used to program an ESP32-C3. To be more
precise, I chose an ESP32-C3-WROOM-02U
module that integrates the ESP32-C3 and
other useful components.

The ESP32-C3 o!ers a few very useful features:

 > An integrated USB-serial converter that
enables communication over USB, an
interface available on virtually every
computer.

 > A CPU with cryptographic accelerators to
calculate the OTP.

 > Hardware that enables flash encryption
to encrypt the secret key and secure boot
to prevent running unauthorized code on
the hardware token.

 > Flash memory to store program code
and key is included on the ESP32-C3-
WROOM-02U module.

The ESP-IDF development framework imple-
ments flash encryption and secure boot on
top of the hardware as an easily accessible
feature. The only missing parts were a PCB to
put all the hardware together and software to
connect the bits and pieces. The ESP-Unlock
project combines all the parts, creates a simple
and cheap open-source TOTP hardware token
and an authenticator application for a host
computer, which is discussed later.

We will now go over the architecture of
the entire project, over the hardware and Figure 1: Communication between an ESP-Unlock hardware token and the host computer.

Guest edited by 15

mitigation would be a security-focused code
review, which has not been done since the
code is an early prototype. Note that secure
boot does not protect against code exploits.
Secure boot only protects against running
unauthorized code on the hardware token. It
does not protect from authorized code misbe-
having and allowing random code execution.
Exploiting the code is most likely with physi-
cal access to the ESP-Unlock. Attacks using
software on the host computer as a proxy
should also be considered, but are less likely
due to the additional steps.

Considering these aspects, if an attacker gains
physical access to an ESP-Unlock, the owner
should set up a new ESP-Unlock and change
the secret keys on all related online services
as soon as possible. Note, however, that as
long as the attacker does not obtain the user’s
credentials (username and password), they
still will not be able to log in. After all, the OTP
is merely the second factor, and you should
still be as secure as without any two-factor
authentication.

Using the ESP-Unlock
Before the ESP-Unlock can generate OTPs,
the ESP-Unlock authenticator application has
to be installed and the key for the two-fac-
tor authentication has to be added. For more
information about the installation of the
ESP-Unlock authenticator app, please refer
to the instructions in its repository [5]. To add
your key, you first need to retrieve it from the
compatible online service you want to use.
How that works depends on the specific online
service, but they normally guide you through

about the host’s operating system, so the
application could be re-implemented for or
ported to any other operating system.

Security Considerations
Please note that this is not a formal security
analysis, which would be too much for the
project at its current stage. It is meant to hint
at dangers that exist and make these dangers
comprehensible for the general reader.

The critical data on the ESP-Unlock is the keys,
which should be kept secret all the time. Direct
access to the key can be prevented by using
flash encryption. But the software running on
the ESP-Unlock has access to the keys, too.
Hence, only authorized software should be
running to prevent unauthorized software from
leaking the keys. Secure Boot makes sure that
only authorized code runs on the ESP32-C3. If
Secure Boot and flash encryption are enabled,
even an attacker who has physical access
to the ESP-Unlock cannot read the key data.

Another factor is that the current software
allows anyone with physical access to the
ESP-Unlock to generate and read out OTPs.
If you lose it and someone else finds it, that
person can generate OTPs the same way as
you do.

The firmware running on the ESP-Unlock
might have exploits. In the worst case, such an
exploit would allow an attacker to execute their
own code on the ESP-Unlock. A mitigation that
reduces some classes of exploits is enabling
the stack protector in the firmware, which can
be set in the firmware’s configuration. Another

optional button that can be used by future
software versions to allow OTP calculations
only if the button is pressed, thus increas-
ing security. Including the USB connector,
the resulting hardware measures 6×1.6 cm,
roughly the size of a normal door key (Figure 2
and Figure 3).

The hardware has been designed with KiCad,
an open-source software capable of creat-
ing circuits and designing PCB layouts.
The ESP-Unlock PCB layout has two-lay-
ers (Figure 4), because this is usually the
cheapest option. All components except the
through-hole components are located on one
side, thus making all SMD components easy
to solder using reflow-soldering.

Software
Two software applications are relevant for this
project: a firmware running on the ESP-Un-
lock, making it “smart,” and an application
running on the host computer, called ESP-Un-
lock authenticator application.

The firmware running on the ESP-Unlock is
a C++ application using ESP-IDF [2] and
ESP-IDF-C++ [4]. As soon as the ESP-Un-
lock firmware boots, the application begins
to listen for OTP requests. The two LEDs will
blink once in an alternating pattern when the
device is ready for requests. Once an OTP
request has been received, the ESP-Unlock
firmware checks if it has a key corresponding
to the name in the request. If yes, it looks up
the corresponding key. Then, it will calculate
the OTP, using the just-read key and the time
from the OTP request. A resulting response
message containing the OTP is sent back to
the host (compare Figure 1). Note that the
entire OTP calculation is done on the ESP-Un-
lock — the key never leaves it.

The ESP-Unlock authenticator application is
responsible for providing a simple user inter-
face and for coordinating communication with
the ESP-Unlock. The user interface lists all
services to which keys are available on the
currently connected ESP-Unlock, displays
OTPs for corresponding services, and allows
adding new keys. It is written for Linux only,
but the ESP-Unlock firmware does not care Figure 4: Top, bottom, and silkscreen layers of the PCB.

Figure 2: ESP-Unlock front. Figure 3: ESP-Unlock back.

16 www.elektormagazine.com

cation, which will display the names of all keys
saved on the ESP-Unlock and on a button
click (step 1 in Figure 7) request and display
the corresponding OTP (step 2 in Figure 7).

If you think this project is interesting, feel free
to take a look or try it and visit the ESP-Unlock
repository [3] and its corresponding ESP-Un-
lock authenticator application repository [5].
Schematics and PCB layout can be found in
the hardware repository [6], but the ESP-Un-
lock hardware is not necessary! You can
indeed use any ESP32-series development
board, given a slightly changed configuration
(in this case, please also refer to the ESP-Un-
lock repository’s README.md [3]). Any contri-
butions to the project, such as suggestions,
hints, improvements, and bug reports, are very
welcome!

230559-01

Questions or Comments?
If you have technical questions
or comments about this article,
feel free to contact the author via
jakob.hasse@mailbox.org or the Elektor
editorial team at editor@elektor.com.

the process of setting up your two-factor
authentication device or application. They
usually display the key as a QR code, which is
convenient when using a smartphone authen-
ticator app, but for the ESP-Unlock, the text
form, formatted as base32, is required. For
example, GitLab provides the base32-encoded
key on the setup page for two-factor authen-
tication besides the QR code (Figure 5).

Once the ESP-Unlock is plugged into the
host computer, two-factor authentication for
a new service can be set up in the authen-
ticator application by following these steps
(compare Figure 6):

1. Click on ADD NEW.
2. In the window that pops up, choose a

service name and enter it.
3. Enter the base32-formatted key itself. Note

that you need to remove any spaces or the
key on the ESP-Unlock will be incorrect.

4. Click on Add Entry.

Whenever you need an OTP from now on, you
insert the ESP-Unlock into the host’s USB port
and start the ESP-Unlock authenticator appli-

[1] Time-based One Time Password (TOTP) standard: https://ietf.org/rfc/rfc6238.txt
[2] Espressif IoT Development Framework (ESP-IDF): https://github.com/espressif/esp-idf
[3] The project’s repository: https://github.com/0xjakob/esp-unlock
[4] ESP-IDF-C++: https://github.com/espressif/esp-idf-cxx
[5] The ESP-Unlock authenticator app: https://github.com/0xjakob/esp-unlock-host-gui
[6] Hardware repository: https://github.com/0xjakob/esp-unlock-hardware

WEB LINKS

About the Author
Jakob Hasse has a degree in Computer
Science, and has various di!erent interests.
While studying, he worked at the German
Aerospace Center in the Robotics field.
Later, he developed a passion for embed-
ded systems and Open-Source software.
After starting as an embedded Linux
systems engineer, Jakob joined Espressif
to work on their FreeRTOS-based Espressif
IoT Development Framework. Besides that,
he is interested in IT security, which is the
main driver for the ESP-Unlock project.

 Related Products
 > ESP32-C3-WROOM-02U
www.elektor.com/20695

 > Peter Dalmaris, KiCad 6 Like A Pro
(Bundle of two books)
www.elektor.com/20180

Figure 5: Base32-encoded key in GitLab (marked red).

Figure 6: Add a new key.

Figure 7: Request OTP.

Guest edited by 17

example, the ESP8266 is an actual IoT WiFi chip. The
fact that even nowadays, people are still starting new
projects with the ESP8266 illustrates how little of this all
can be considered “retro.” (Although, if you’re thinking of
starting a project with an ESP8266 chip yourself, we’d
ask you to consider using e.g. an ESP32-C3 instead; as
it turns out, half a decade of innovation makes that a
much nicer chip for about the same price.)

As such, I decided that it might make for a more inter-
esting story to see if I could interface between the old
and the new. In this particular case, I’m going to marry a
more than 50-year-old Dekatron to the relative newcomer
that is the ESP32-C3 and use that as an indicator of how
much of our internet bandwidth we’re using. Surely, that
wasn’t a use anyone had in mind when the Dekatron was
built, but it is a good use nevertheless.

The Dekatron Tube
In case you’re unfamiliar with antique electronic goods, a
Dekatron is a gas-filled glass tube. (Note that this is unlike
a vacuum tube, which is typically filled with a marked
absence of any gas.) The gas is usually an inert gas such
as neon, but gases like hydrogen were also used. If the
mention of “neon” reminds you of the small neon lights
you used to see in on/o" buttons of old devices, you’re
not far o": They make use of similar principles.

A Dekatron is e"ectively a counter with a visual indica-
tion of a count. It works as such: The top of a Dekat-
ron contains a round anode. It has 30 cathodes in the
form of pins evenly spaced around it, as you can see in
the explanatory drawing of Figure 1 and in the real-life
snapshots of Figure 2. Ten of these are so-called output
cathodes, the other twenty are guide cathodes, which are
divided into two groups: G1 and G2 (Φ1 and Φ2, respec-
tively, in Figure 1). Each output cathode will have a G1
guide cathode, G1 on one side and a G2 on the other.
All G1 cathodes are paralleled, as are all G2 cathodes.

When started, a current-limited 400 V is applied between
the anode and the output cathodes. As this is more
than the ionization voltage of the gas, the gas will ionize
and glow at one of these cathodes. As this lowers the
anode voltage to below the ionization voltage, no other

Unlike some venerable institutes like Elektor, Espres-
sif doesn’t really have a history that goes back very far.
This is probably for the best: We doubt that there would
have been a large market for IoT WiFi chips back in 1961.
Instead, Espressif was set up in 2008, to release their
first chips a good five years later: the ESP8089 and the
ESP8266. While the ESP8089 was mostly an OEM chip,
designed to give Wi-Fi capability to Android tablets, for

RETRONICS

By Jeroen Domburg, Espressif

Exactly as is the case with music, where
ancient and modern styles often blend to

achieve extraordinary results, the same can
be veri!ed in electronics: In this article, a
very modern ESP32-C3 module e"ectively
drives a Dekatron, a decadic vacuum tube
counter from the 1950s — bringing it back

to life after 70 years!

Figure 1: Basic working
principles of a Dekatron.

(Source: Wikimedia
Commons.)

Dekatron
A Piece of History Comes Back to Life!

18 www.elektormagazine.com

electrode will glow. This glow can be “transferred” to
the adjacent output cathodes by grounding G1 and G2
in sequence — for instance, if G1 is grounded and then
G2 is grounded, the ionization will travel clockwise, while
reversing the G1/G2 sequence makes the ionization travel
counter-clockwise.

What’s the use of all these ionization shenanigans? Well,
it makes these bits of glass, metal and gas capable of
counting the G1/G2 pulses; specifically, it can count up to
ten of those before wrapping around (hence the “deka” in
“Dekatron”). Usually, some or all of the output cathodes
are led to individual pins on the base of the Dekatron,
so certain counts can be detected. This way, they can
be used as pulse counters and frequency dividers, and
also as memory elements: Famously, a 1951 computer
uses Dekatrons as such [1]. (Note the present tense in
the previous sentence: The computer is still running as
a museum exhibit!)

Obviously, Dekatrons have been obsoleted multiple times
over, initially by counters built out of discrete transistors.
Then, as ICs took over the more complicated tasks, chips
such as the venerable CD4017 decade counter picked up
the baton. Finally, nowadays in the time of cheap micro-
controllers and FPGAs, the function of the Dekatron is
usually achieved by but a few lines of code or HDL.

One downside of all these newfangled counting
techniques, however, is that unlike the Dekatron, they
won’t provide any visual output by themselves. Sure, you
can connect LEDs to your CD4017 (like I suspect many
readers have done in their past), or put a spinner on
that LCD that you connected to your fancy new micro-
controller, but there’s something to the neon glow of the
Dekatron that cannot really be replaced with pixels or
light-emitting semiconductors.

Supply Design Challenges
Therein also lies a bit of a problem: the ESP32-C3 is
ideally suited to lighting up those pixels or LEDs, but not
so much to interface with 70-year-old glassware: For all
the good it does to the Dekatron, the 3.3 V the ESP32-C3
can send to its IO pins might as well not exist. In other
words, aside from finding a way to generate the 400 V,
we also need to switch several high-ish voltages.

Let’s start with the 400 V. The easiest way to get this is
to use a voltage doubler on the voltage from the mains.
However, for this product, I didn’t really want to use mains
voltage; the safety precautions needed when dealing with
that would be a bit too much. I decided instead that a
modern USB-C connector was the way to go; between
laptop power bricks, cellphone adapters, and that random
charger you got with some electronic device (but you

can’t for the life of you remember which one), there’re
enough power supplies with that connector to go around.
Additionally, nowadays USB-PD is a common standard,
and this allows you to request higher voltages than the
5 V normally available on a USB port. This happened to
come in handy in this case.

So how to generate that 400 V? There are multiple ways
to do this. The most straightforward of them involve trans-
formers: For instance, you can convert your low voltage to
AC, dump it into the low-voltage winding of a transformer,
and get high-voltage out of the other end. Another way is
to use it as a flyback converter: Charge the magnetic field
by applying a voltage to the low-voltage side, remove the
voltage and have the collapsing magnetic field be picked
up by the high-voltage side, and there’s your output. The
issue with both these solutions is that miniature trans-
formers tend to be a fairly niche product, and this runs the
risk of the design not being replicable when the chosen
one goes out of stock. While I don’t expect this design
will be made by the millions, I’d like it to work and be
repairable for a long time, so non-standard components
aren’t really something I want here.

The Solution
So instead, I’m going with another option: a boost
converter. A boost converter is generally used to convert
voltages to slightly higher voltages. You might, for
example, use one if you want to run some 5 V logic from
two AA batteries. They have the downside that boosting
voltages by a lot is somewhat problematic — specifically,
the switching element that switches the low voltage also
needs to stand up to the high output voltage, and the
maximum factor you can boost your input voltage by is
limited by things like the DC resistance of the inductor
you use.

A trick to get around this is to use a voltage doubler after
the boost converter; this way, we only need to boost to
half the 400 V required. (Note that this trick is taken from
a tried-and-true Dekatron boost converter circuit [2])

Figure 2: The Dekatron in
action in a FWD count,
with the related signals
on G1 and G2.

Guest edited by 19

rectification and voltage doubler formed by D5 to D7. This
results in two DC voltages, one of 200 V and one of 400 V.

Q4 is special; as stated before, it specifically needs to
be able to stand up to the high voltages L2 generates.
Unfortunately, MOSFETS that can do this do not tend to
be logic-level ones, so Q2 is there to convert the incoming
3.3 V PWM signal into something that makes it conduct.
That PWM signal is generated by the ESP32-C3, and the
duty cycle is regulated by measuring the 200 V rail and
adjusting accordingly. This is done by dividing it down into
something the internal ADC can digest, using R17 to R21.

Aside from 400 V, we also need some lower voltages, and
these are generated by dividing the 200 V down using
some resistors. Note that the schematic tends to use

The other trick is that we can start with a higher voltage:
Generally, PD-compatible USB-C chargers can deliver
5 V but also 9 V, 15 V, or 20 V, if you request it. This means
that the boost converter doesn’t have to work so hard to
get the input voltage all the way up. (Another solution
would be to use a second boost converter to get the
supply voltage raised a bit before increasing it all the
way to 400 V. Full disclosure: I picked the USB-PD route
as I wanted to play with USB-PD anyway.)

The implementation details of this are in Figure 3.
The voltage from the USB port, J1, is stabilized using
two ceramic caps first. The main boost logic is formed
by L2 and Q4: When Q4 is in conduction, it’ll build up a
magnetic field, and when it’s open, the current from the
collapsing field will be dumped into C11 and C12 via the

230560-002

VBUS

VUSB +3V3

+3V3

VBUS

+100V

R22

+50V

+400V

2nd Guides
1st Guides
Cathode D
Common Cathode + A, B, C
Anode

+3V3

C14

1µ
100V

C13

1µ
100V

C12

1µ
250V

C11

1µ
250V

C10

1µ
250V

C9

10µ
16V

C15

10µ
16V

+3V3

+50V

+100V

+200V

+400V+3V3

VUSB

600mA

Q4

G

D

S
IPN70R750P7SQ2

S8050

L2

470µH

R12

68
0Ω

R9

10
k

R10
1k

R17

68
0k

R18

68
0k

R19

68
0k

R20

68
0k

R21

6k
8

R27

33
k

R28

33
k

R29

33
k

R30

33
k

D5

ES2J

D6

ES2J

D7

ES2J

IO19
IO18

IO10

3V3

IO4
IO5
IO6
IO7
IO8
IO9
GND

IO0
IO1
IO2
IO3

TXD
RXD

EN

18
17
16
15
14
13
12
11
10

1
2
3
4
5
6
7
8
9

ESP32-C3-WROOM-02
U1

C2

10µ

R1

10
k

C1

1µ

R2

4k
7

R3

4k
7

R34

1k

SW1

R33

4k
7

R31

1k

R32

1k

D9D8

J2
1
2
3
4
5

R15

18
0k

R16

18
0k

R24

18
0k

R26

18
0k

Q5

MMBTA92 R25

12
0k

12
0k

R23

6k
8

R6
1k

R7

22
0k

R8

22
0k

Q1

MMBTA42R11
1k

R13

22
0k

R14

22
0k

Q3

MMBTA42

VBUS

SBU2
VBUS

VBUS
SBU1

VBUS

B12

GND

CC2
DP2
DN2

GND

GND

DN1
DP1
CC1

GND

A12B1

B4
B5
B6
B7
B8
B9

A9
A8
A7
A6
A5
A4

A1
0

0

0

0

0

0

0

0

J1

D1

D1...D4 = LESD5D5.0CT1G

D2D3 D4

VC
O

NN

VC
O

NN

INT_N

VBUS

CC1

CC2

VD
D

G
ND

SDA

SCL
10

12 13

2

1

3

8

7

6

5

FUSB302B01MPX

U3

C7

1µ

C3

200p

C4

200p

VIN
G

ND

BS

EN

SW

FB

1

5

4

2

6

3

MT2492
U2

C6

10µ

C18

10µ

C16

10µ

L1

WCH0420-4µ7

C17
22n

R5

27
k

R4

12
0k

Figure 3: Schematics of
this project.

20 www.elektormagazine.com

board, even with a ground plane that is mostly intact. I
decided to have the PCB fabbed in a nice black solder
mask so that it wouldn’t stand out and steal the show
from the Dekatron, as you can see in Figure 5.

Software Implementation
With the hardware built, I started coding. The software
needs to do a few things. First of all, it needs to make
sure the rest of the hardware gets the proper voltage,
and, to do that, it needs to implement a USB-PD stack to
talk to the attached power supply. I’ve used an existing
library for that that works well [5]. The hardware itself
can use a fairly wide voltage range, so the software will
try to request 12 V from the power supply, but if that
fails it’ll accept either 9 V or 15 V as well. To also get the
Dekatron its high voltage, it measures what the current
voltage on the 200 V rail is and adjusts the PWM duty
cycle to the boost converter accordingly.

multiple resistors in series where only one would su"ice:
This is because I wanted to use 0603 parts, and these
only stand up to 75 V or so. Putting them in series means
a lower voltage drop on each one, meaning no sudden
sparks: While HV arcing would be an epic indicator of
a top-rate download, it lacks in replicability and would
smell up the room.

On the Dekatron side, as illustrated in the schematics
in Figure 3, the 400 V is fed into the anode via a 720 kΩ
resistance. According to the datasheet [3], the anode
current needs to be limited to about 310 µA, and this
series of resistors takes care of that. The G1 and G2
signals are level-shifted by two high-voltage NPN transis-
tors, and one of the non-shared cathodes is brought to a
PNP transistor level shifter in order to make the ESP32-
C3 aware if the glow passes this cathode.

The ESP32-C3 Module
The ESP32-C3 itself is visible in the middle of the
schematics of Figure 3. As I’m using an ESP32-C3-
WROOM02 module, most of the needed support
hardware is included: flash, RF matching networks, and
the antenna are all there. The only things on the outside
are two indicator LEDs, a push button and an RC network
to generate a power-on reset. If you’re using KiCad for
your PCB design, like I am, note that Espressif maintains
a free-to-use repository of symbols and footprints for all
the modules and chips [4].

Finally, In the top and right part of the diagram, the
power section is shown. The USB-C connector has
two purposes: If a USB-PD supply is attached, it powers
everything, but you can also connect it to your computer.
In that case, the Dekatron will not power up, as the 5 V
supply that is available is not enough for that, but it does
allow reprogramming the code in the ESP32-C3 flash.
In order to do the USB-PD negotiation, a FUSB302
USB-C controller is used; the ESP32-C3 can talk to this
over I2C to have it communicate with the power supply. In
order to convert whatever voltage comes in to something
the ESP32-C3 can run on, I used a synchronous buck
converter, namely the Aerosemi MT2492. This little chip
works at up to 16 V, and the fact that it’s a switcher means
it stays nice and cool while generating the 3.3 V rail that
the ESP32-C3 works on.

PCB Layout
Figure 4 shows the PCB design. I chose a form factor that
is as wide as the Dekatron itself, so it can “hide” under-
neath. Routing this PCB actually is a bit trickier than it
would appear: The high voltages meant I needed to keep
creepage in mind, or traces might arc over, and, generally,
the high voltage requires physically larger components.
I still managed to squirrel everything away on a two-layer

Figure 4: PCB layout of
the ESP32-C3-based
Dekatron interface.

Figure 5: The fully
populated PCB of this
project.

Guest edited by 21

Secondly, it needs to figure out the currently used internet
bandwidth. My internet connection is actually distributed
through an Ethernet switch, and this switch keeps statis-
tics about all the data flowing through it. This data is easily
obtained using a protocol called the Simple Network
Management Protocol (SNMP). This protocol is generally
used to monitor IT infrastructure such as routers, switches,
servers, etc. It is low-overhead as it only requires a few
UDP packets to request the statistics for a network port,
so I could easily do this multiple times per second to
get a real-time idea of the tra"ic used. This data is then
used to set the speed of the G1 and G2 pulses, meaning
faster download results in quicker clockwise spinning.
If someone is uploading data instead, the Dekatron will
also spin, but in the counter-clockwise direction.

The final feature the firmware needs to have is a sort of
configuration interface. I don’t like hard-coding config-
uration into my firmware, so I needed some way to enter
the Wi-Fi credentials as well as the switch’s IP and SNMP
information. Entering Wi-Fi information is called provi-
sioning, and ESP-IDF has a perfectly good solution for
that, which uses a smartphone app to streamline the
process. However, in this case, I went for what’s called a
WiFi manager. When unconfigured, this creates a Wi-Fi
access point where you can point a laptop or phone.
Once connected, it opens a webpage that allows you to
select the Wi-Fi access point and enter the password
(Figure 6). As the Wi-Fi manager needs a web server
anyway, it’s easy to expand it to add a configuration page
for the SNMP parameters as well (Figure 7). To help
debugging, there’s also some statistics on there, such
as the actual voltage negotiated with the power supply.

Designing the Case
With the software and hardware done, I still needed
one last thing: a case. In this situation, a case wasn’t
only needed for decorative reasons: The PCB contains
voltages that, while not likely to be deadly, can still bite
you pretty bad. I outsourced this work: I asked one of
our resident industrial designers if he could make me
a case and print it on our SLA 3D-printer. He was nice
enough to oblige (Thanks, Kaijie!) and printed a case
in transparent resin, so you could still see the Dekat-
ron’s internals of.

At least, that was the idea. As it turns out, the way the
case is printed makes it opaque rather than transparent.
Luckily, there’s a pretty easy way to fix this: You simply
coat the object with a thin layer of resin, then cure that
resin by shining a UV light on it. The results of this are
in Figure 8, next to an untreated case. I probably could
have done a better job making the covering more even,
but, honestly, I don’t mind the “handmade” aesthetic the
current case has: When the Dekatron is fitted, as seen in

Figure 6: Selecting the
correct access point on

the ESP32 WiFi Manager
page.

Figure 7: Entering the
configuration parameters

for the connection.

Figure 8: 3D-printed
housings for the project:

raw (left) and painted
with resin and cured

under UV light (right).

22 www.elektormagazine.com

 Related Products
 > Anycubic Photon Mono X – UV Resin SLA
3D Printer
www.elektor.com/19831

 > ESP32-C3-DevKitM-1
www.elektor.com/20324

 > Dogan Ibrahim, The Complete ESP32
Projects Guide (Elektor, 2019)
www.elektor.com/18860

Figure 9, it automatically pulls attention to the front of
the unit. This obviously looks even better when the unit
is turned on: Even if you aren’t aware of what exactly it
visualizes, the glowing point that goes round and round
is really eye-catching, as you can see in Figure 10.

Before We Leave
All in all, I made something that I hope, at least partially,
qualifies as Retronics. Perhaps, some day in the future,
the entire project will qualify as such. Perhaps, by that
time, Elektor and Espressif will cooperate on a magazine
take-over again, and maybe — just maybe — I’ll be
allowed to take this unit o" its shelf and wax lyrically
about all the things that led to its existence. But, for now,
it’ll be useful as something to look at during my next
large downloads.

If you have a Dekatron and want to recreate this design
(or simply reuse hardware or software bits for your own
purposes), the entire project is open-source. You can
find the firmware as well as the PCB artwork and the 3D
design files for the enclosure on GitHub [6].

230560-01

Questions or Comments?
If you have technical questions or comments
about this article, feel free to contact the author at
jeroen@spritesmods.com or the Elektor editorial
team at editor@elektor.com.

About the Author
Jeroen Domburg is a Senior Software and Technical
Marketing Manager at Espressif Systems. With more
than 20 years of embedded experience, he is involved
with both the software as well as the hardware design
process of Espressifs SoCs. In his private time, he likes
to tinker with electronics as well to make devices that
are practically useful as well as devices that are less so.

[1] The Harwell Dekatron computer (WITCH): https://tnmoc.org/witch
[2] Dekatron boost converter circuit:

https://threeneurons.wordpress.com/dekatron-stuff/dekatron-do-hickie-kit
[3] GC10/4B Datasheet: http://r-type.org/pdfs/gc10-4b.pdf
[4] KiCad libraries for Espressif chips and modules: https://github.com/espressif/kicad-libraries
[5] USB-PD driver stack for the FUSB302 : https://github.com/Ralim/usb-pd
[6] The project’s repository: https://github.com/Spritetm/elek_dekatron

WEB LINKS

Figure 9: The complete
project in its final
housing.

Figure 10: The prototype
at work: irresistibly eye-
catching!

Guest edited by 23

Elektor: Let’s begin with your background. Have
you always been interested in electronics and
engineering? What led you to study for degrees
in computer science at the University of Twente?

Schoutsen: I studied Business Information Technol-
ogy at the University of Twente. It has programming
and database courses, but the program focuses on
information systems: What information "ows through
business processes and how you can capture, process,
and analyze it. In a way, it’s a precursor to my home
automation journey. I was always very interested in
programming, but not so much in electronics. That
came by accident. When the Philips Hue connected
light was released in 2012, I immediately bought
it. I realized it had a local API and wrote a script to
control the light from my computer. This script
grew, and on September 17, 2013, I pushed the #rst

version to GitHub; Home Assistant was born. This
open-source smart home platform focusing on local
control and privacy has become the second-most-
active open-source project on GitHub [1].

As Home Assistant grew, I played around with
electronics, but there was a big problem: connecting
electronics to the internet was too expensive. Adding
an Arduino Wi-Fi shield costs $70. But, then, the chip
that would change everything arrived: the ESP8266
by Espressif.

The ESP8266 was a $3.50 chip that eventually ran
Arduino-compatible code and could connect to a
wireless network. This a$ordable chip #nally made
it #nancially feasible to tinker with electronics that
could integrate with your smart home.

While the ESP8266 slowly got a foothold in the DIY
space, I founded Nabu Casa. Nabu Casa exists to
make the development of Home Assistant sustain-
able. Home Assistant is a big open-source project,
and running a project such as this requires a lot of
administration, processes, structure, and mainte-
nance — more than anyone can do in their spare time.

The Smart Home
Revolution
Paulus Schoutsen on Home Assistant,
ESPHome, and More

With Paulus Schoutsen

Questions by Saad Imtiaz (Elektor)

Paulus Schoutsen, the mind behind Home
Assistant and ESPHome, talks about his journey
into the world of home automation, IoT, and more.
Discover how ESPHome’s easy-to-use #rmware is
changing the game for DIY smart devices.

About Paulus Schoutsen
Paulus Schoutsen is the founder of Home Assistant, one of the largest open-source
projects on GitHub, and Nabu Casa, the company that ensures the long-term
viability of Home Assistant. His work revolves around building the “Open Home”:
his vision of a smart home that o!ers privacy, choice, and sustainability.

Paulus Schoutsen. (Source: P. Schoutsen / Midjourney)

24 www.elektormagazine.com

A bonus feature of ESPHome is that devices can
also act as a Bluetooth proxy for Home Assistant.
This allows Home Assistant to expand its Bluetooth
reach by using ESP32s running ESPHome to listen
for BLE packets and establish direct connections for
control. To make this extra useful for tinkerers, we’ve
also introduced BTHome [5], a BLE protocol to send
data that these Bluetooth proxies pick up (Figure 1).

Elektor: ESPHome has a sizable following in
the DIY smart home community. What do you
believe has led to its popularity?

Schoutsen: Ease of use. We’ve been relentlessly
focusing on making it easier to play with hardware.
With ESPHome, you’ll never be #ghting with C++
compilation errors or miscon#gured MQTT topics.
And, it’s easy to share your con#guration #les with
other users, making it possible for beginners to build
working devices immediately.

We’ve also developed a tool to make sharing con#g-
urations easier: ESP Web Tools. This is a web-based
installer for ESP8266 and ESP32 boards that allows
users to one-click-install #rmware on their devices
directly from their browser. Now, users can buy
ready-made devices and install ESPHome on
them. For example, we allow users to turn their
M5Stack Atom Echo Dev Kit into a voice assistant
for Home Assistant directly from their browser [6].

ESP Web Tools was a great help in sharing our
ESPHome-based projects, but we believe this kind
of technology should be shared with everyone. So,
nowadays, it also powers the installers of Tasmota,
WLED, and a lot of other #rmware.

Full-time Nabu Casa employees provide that, funded
by subscriptions with extra services we o$er users.
Nabu Casa has no investors and only exists to satisfy
its users.

As Home Assistant grew, we de#ned our Open Home
vision [2]. It’s a vision for the smart home based on
three values: privacy, choice, and sustainability. From
this vision, we realized that if you want your smart
home to be local and private, this should apply to both
the smart home platform (i.e., Home Assistant) and
the devices connected to it.

One of the core developers of Home Assistant was
Otto Winter. He was interested in electronics, but
found that early ESP8266 projects had too much boiler-
plate and needed easier integration with Home Assis-
tant. He set out to solve that, and, on January 21, 2018,
he released Esphomelib [3]. ESPHome got increasingly
popular, but Otto didn’t have the time to manage it
anymore. Because ESPHome is an essential foundation
for people to make devices that match our Open Home
values, we wanted to support it. On March 21, 2018,
Nabu Casa acquired ESPHome [4]. Today, we have
two dedicated full-time developers working on
ESPHome, all funded by the people subscribing to
Home Assistant Cloud by Nabu Casa.

Elektor: Can you brie"y describe ESPHome?
How does it di#er from other IoT $rmware and
home automation solutions?

Schoutsen: ESPHome is #rmware for ESP8266, ESP32,
and Raspberry Pi Pico boards that allows users to create
and maintain smart home devices easily. ESPHome
takes away all the boilerplate of writing software and
enables you to focus on making your hardware.

To give you an example of how easy it is to make
something with ESPHome: Just take a temperature
sensor and connect it to your ESP32, tell ESPHome, in
a con#guration #le, which pin the sensor is connected
to, and hit Install. ESPHome will then generate all the
necessary #rmware and install it on your ESP32 device.
The device will boot up, connect to your Wi-Fi network,
and your temperature will be available in Home Assis-
tant. That’s it.

The #rst time you install ESPHome, you must connect
the board to your computer. Subsequent updates
happen over the air. Connect a second sensor to the
same board? Just update the con#guration #le and
hit Install. No matter where in the house your device
resides, updates are seamless.

Figure 1: Home Assistant
can extend its Bluetooth
range by using
ESPHome-powered
Bluetooth proxy devices.
(Source: Paulus
Schoutsen)

Guest edited by 25

Topics of interest this year for ESPHome have been
voice assistant, Bluetooth proxy, and e-ink displays:

 > Voice assistant lets you turn an ESPHome device

into a voice assistant that controls Home Assis-
tant. ESPHome is responsible for capturing audio,
while Home Assistant processes the speech and
acts on it. You can install a voice assistant from
your browser [6].

 > Bluetooth proxy allows turning any ESP32 device

into a Bluetooth proxy for Home Assistant.
Home Assistant uses the ESP32’s BLE to listen for
packets and connect to devices to control them.
You can install a Bluetooth proxy from your
browser [7].

 > E-ink displays are hot. We’ve been adding
support for more, so building the most fantas-
tic dashboards for your smart home is more
accessible.

Elektor: IoT and home automation security
is a major worry. What security and privacy
measures does ESPHome take to protect user
data and connected devices?

Schoutsen: By default, each new ESPHome device
is encrypted using the Noise protocol. It’s a fast and
e%cient protocol that Wireguard and WhatsApp also
use. It means that no one can snoop on ESPHome data
on the network.

If you use ESPHome devices together with Home Assis-
tant, your smart home will be fully open source and
work fully locally and encrypted. No data will be shared
with anyone, and your smart home can even function
when it’s not connected to the internet.

When ESPHome contains a security update, it can
recompile your con#guration #le and update your
device wirelessly to ensure it is running the latest
version. To help you keep your smart home secure,
updating your ESPHome devices from within
Home Assistant is possible.

Elektor: Could you o#er some real-world use cases
or projects where Home Assistant and ESPHome
have made a signi$cant or unique di#erence?

Schoutsen: Humans emit CO2 into the atmosphere,
causing the climate to change and the world to heat up.
One way we can all help with this is to ensure that our
individual energy footprint is as small as possible. Our
homes represent a substantial part of our energy use.

Elektor: How can ESPHome make it easier to
integrate numerous sensors and devices into a
home automation environment, particularly for
people without extensive coding experience?

Schoutsen: The great thing is that, to use ESPHome,
you don’t need to know how to program. The problem
with electronics is that you’re learning three things
simultaneously: How do I build hardware, interact with
that hardware, and get that interaction into another
system? With ESPHome, a user can focus on just the
#rst step: experimenting with hardware. The rest, we
take care of for you. We allow users to concentrate on
the fun part of building their hardware.

Elektor: YAML-based setup is one of ESPHome’s
standout features. Can you explain why you
picked this method and how it bene$ts users?

Schoutsen: When ESPHome was founded, it
mimicked Home Assistant’s architecture and con#g-
uration format. It #ts the ESPHome format very well.
An integration represents each connected sensor. You
can con#gure that integration to tune the sensors,
and it will be included the next time you update your
device.

Elektor: The ESPHome community has helped to
expand the list of compatible devices and compo-
nents. How crucial is community involvement to
the project’s success, and how do you e#ectively
manage this collaboration?

Schoutsen: For open-source home automation, the
community is indispensable. It takes time to dive into
how each sensor works, #gure out the drivers, and
hook it into ESPHome. Our full-time maintainers are
working with the community to review their contri-
butions and get things merged.

Figure 2: Energy
dashboard in
Home Assistant
for easy access to
energy consumption.
Additionally, it provides
indicators to assess grid
reliance. (Source: Paulus
Schoutsen)

26 www.elektormagazine.com

dashboard to adopt the device and be able to install
updates. We want to streamline that, so users do not
need to learn all that to stay up-to-date. It’s part of our
ongoing e$orts to improve product experience in our
Works with ESPHome program.

The Works with ESPHome program allows creators to
carry our badge if their devices ful#ll a set of require-
ments by, for example, enabling features for easier
onboarding and allowing users to customize the
device’s con#guration.

Elektor: What tips would you give to beginners
interested in getting started with ESPHome and
starting on their own home automation projects?
Do you have any resources or best practices to
share?

Schoutsen: Start with a simple ESP32 development
board and a temperature sensor. Get it working, set
it up in Home Assistant, and start playing with the
ESPHome device configuration. You will see the
changes instantly re"ected in Home Assistant as you
update your device.

The easiest way to get started with ESPHome is by
installing it from the add-on store in Home Assistant
[11]. It’s a 1-click installation. Click Add device and a
wizard will guide you in installing your #rst device.
Happy automating!

In 2021, we introduced home energy management in
Home Assistant [8]. It allows users to monitor their
energy usage, transition to sustainable energy, and
save money (Figure 2).

The most crucial information is knowing how much
energy "ows between the electricity grid and your
home. Real-time access to this information allows
users to decide when to adjust their energy usage by
charging their e-bikes, doing the laundry, or reducing
their heating.

Getting this information from electricity meters is a
somewhat standardized task, but adoption of di$er-
ent standards is usually on a per-country or per-re-
gion basis. Together with our community, we built
open-source devices based on ESPHome to support
various standards. For example, the SlimmeLezer by
Marcel Zuidwijk [9] connects directly to P1 ports (used
in the Netherlands and some other EU countries) to
access real-time energy usage and cumulative energy
and gas consumption. Other electricity meters have a
pulsing LED instead of a port. Each pulse represents a
unit of energy used. With the Home Assistant Glow by
Klaas Schoute [10], these LED pulses can be counted
for accurate energy consumption, and Home Assistant
can track your usage over time (Figure 3).

Elektor: What further advancements or enhance-
ments may ESPHome users expect as the IoT
ecosystem evolves? Are you thinking about
joining ESPHome and Home Assistant together?

Schoutsen: One of our values for Open Home
is choice. So, while we ensure that the integra-
tion between Home Assistant and ESPHome is the
best, we’re not interested in locking people out of
controlling ESPHome devices via other systems.

There are some more opportunities for tighter integra-
tion. For example, when a user buys a device with
ESPHome #rmware, they need to use the ESPHome

Figure 3: Home Assistant
Glow by Klaas Schoute.
(Source: Paulus
Schoutsen)

ESPHome is a f irmware
for ESP8266, ESP32,
and Raspberry Pi Pico
boards that allows users
to create and maintain

smart home devices
easily.

Guest edited by 27

We also want to explore cheaper air-quality sensors. If
the air in your room is bad, it can impact your thinking
and performance. It would be cool to unlock cheap
sensors based on ESPHome to help people live health-
ier lives.

Elektor: Users may encounter di%culties while
integrating custom sensors or devices. Is there
any plan to simplify this process even more and
make it easier for makers to connect their own
DIY sensors to ESPHome?

Schoutsen: Any ESPHome configuration gener-
ates a C++ project that is compiled and installed
on your device. If a developer of custom sensors is
creating their own protocol, they need to write C++
to integrate this into ESPHome. We have protocols
such as BTHome [5] to send data, but that is meant
to get the data into Home Assistant.

Elektor: Are there any plans
for Home Assistant to become
a cloud-based solution as wel,
where you can use an ESP32
sensor setup to send data and
visualize data, and not set up
and run Home Assistant on
the local server?

Schoutsen: No. Your smart
home should run locally and
keep your data there. We’ve
released the Home Assistant
Green [13] to make it easier for
users to run Home Assistant. It
runs Home Assistant out of the
box and is the easiest way for new
users to get started with Home
Assistant. It retails for $99.

Elektor: Are ESPHome and Home Assistant
involved in any partnerships or collaborations
with hardware makers, or in any other e#orts
to improve device compatibility and user
experience?

Schoutsen: Yes. We have the Made for ESPHome [14]
program to work with creators selling ESPHome-
based devices to get the best experience. It has a set
of requirements to ensure the devices are customizable
and open. We also have the Works with Home Assis-
tant [15] program. This program ensures that we test
devices for compatibility and work with the vendor
to #x any issues.

Elektor: ESPHome is known for its user-friendly
approach, but what actions or resources would
you recommend for total novices to assist them
get started with their $rst ESPHome project?

Schoutsen: I would go to YouTube. There is a wide
variety of getting started videos.

Elektor: Is there any idea or continuing attempt
to provide more detailed documentation or
courses designed primarily for beginners in
the spirit of making home automation more
accessible?

Schoutsen: We’re looking into that for 2024 — we’d
love to have an easy starter kit for ESPHome.

Elektor: Can you offer any information on
planned features or upgrades that will make
E S P H o m e e v e n m o r e
user-friendly? Are there any
plans to improve the user
interface?

Schoutsen: When you create
an ESPHome device, you embed
your Wi-Fi network and password
into the #rmware. That way, it will
automatically #nd your network
and connect to it. Great, except
when you want to share it with
friends or sell your creations. To
make this work, we’ve developed
Improv Wi-Fi [12]. It’s a standard
that enables setting up devices
using BLE or Serial.

One improvement that we’re
planning is to add support for
Improv Wi-Fi over BLE to Home Assistant. So, when
you plug in a purchased device, Home Assistant can
guide you through the onboarding experience and
get the device connected and con#gured.

Elektor: ESPHome already works with a wide
variety of sensors and devices. Are there plans to
add more sensors and components in the future,
and if so, what types of sensors can users antic-
ipate seeing?

Schoutsen: We will never stop! We’ve seen a recent
surge in mmWave sensors added. They o$er a new
way of presence-sensing in a room that works even
when you sit very still.

With ESPHome, a user
can focus on just the

f irst step: experimenting
with hardware. The

rest we take care of for
you. We allow users to
concentrate on the fun
part of building their

hardware.

28 www.elektormagazine.com

line this process to ensure that users always have
the most recent and stable versions?

Schoutsen: Security is a top priority in our vision
for the Open Home, which makes it a top priority
for our projects like Home Assistant and ESPHome.
We’ve made it very easy to keep everything up to date:
Home Assistant allows users to update all parts of
Home Assistant with a single click from the interface.
This includes updating ESPHome devices over-the-air
when a new ESPHome version comes out.

230594-01

Elektor: How does Home Assistant manage
introducing new features while supporting exist-
ing ones to ensure a reliable and user-friendly
experience for all users as it evolves?

Schoutsen: It takes a lot of people. Last year,
Home Assistant was the second-most-active
open-source project on all of GitHub. We had
13,200 people contribute. All these people are working
on keeping Home Assistant compatible as the smart
home space evolves by supporting new devices or new
features in devices. The power of Home Assistant is
the community behind it. The community makes it
the best platform and o$ers us the best ideas to make
our homes smart.

Elektor: Many newcomers to home automa-
tion and IoT may be concerned about the learn-
ing curve. What tips would you give to new
users to assist them overcome obstacles and
frustrations?

Schoutsen: Don’t start with anything fancy; stick to
the default path for now. Some alternative ways exist
to install Home Assistant but stick to Home Assistant
Operating System. The same goes for ESPHome; stick
to standard ESP32 boards at #rst, and don’t try to go
fancy with less common boards like ESP32-S3. It only
makes things more complicated.

Elektor: How are firmware and bug patches
handled? Are there plans to automate or stream-

 Related Products
 > Espressif ESP32-C3-DevKitM-1
https://www.elektor.com/20324

 > Espressif ESP32-DevKitC-32E
https://www.elektor.com/20518

[1] Top open-source projects: https://octoverse.github.com/2022/state-of-open-source
[2] The Open Home: https://home-assistant.io/blog/2021/12/23/the-open-home
[3] Esphomelib: https://community.home-assistant.io/t/esphomelib-library-to-greatly-simplify-home-assistant-integration-with-

esp32/40245
[4] ESPHome acquisition: https://home-assistant.io/blog/2021/03/18/nabu-casa-has-acquired-esphome
[5] BTHome protocol: https://bthome.io
[6] Voice assistant for Home Assistant: https://home-assistant.io/voice_control/thirteen-usd-voice-remote
[7] Bluetooth proxy installation: https://esphome.github.io/bluetooth-proxies
[8] Energy Management in Home Assistant: https://home-assistant.io/blog/2021/08/04/home-energy-management
[9] SlimmeLezer by Marcel Zuidwijk: https://slimmelezer.nl
[10] Home Assistant Glow by Klaas Schoute: https://github.com/klaasnicolaas/home-assistant-glow
[11] Add-on store in Home Assistant: https://my.home-assistant.io/redirect/_change/?redirect=supervisor_

addon%2F%3Faddon%3D5c53de3b_esphome
[12] Improv Wi-Fi: https://improv-wifi.com
[13] Home Assistant Green: https://home-assistant.io/green
[14] Made for ESPHome: https://esphome.io/guides/made_for_esphome.html
[15] Works with Home Assistant: https://partner.home-assistant.io

WEB LINKS

 Related Products
 > Espressif ESP32-C3-DevKitM-1
www.elektor.com/20324

 > Espressif ESP32-DevKitC-32E
www.elektor.com/20518

Guest edited by 29

The concept of “burning the !rmware” was often used on one-time
programmable (OTP) memory, such as the programmable read-only
memory (PROM), where you can only write data to the memory
once, so, the term “burn” implies irreversibility. The explanation
for this is the fact that a physical connection path is burned, like a
fuse, between two points, interrupting the current "ow, and chang-
ing this “bit” from a 1 to 0.

In contrast to this, an ESP32 application is stored in an external
"ash memory, and this allows you to "ash the !rmware or rewrite
data thousands of times.

Flashing the ESP32
On the ESP32, the "ashing process is easier than on most other
microcontrollers, mainly because the ESP32 can be "ashed over
UART. There is no need for a special programmer or JTAG (although
the JTAG port is present on the ESP32 for debugging) — just an
external USB-to-serial adapter. If you are using a recent ESP32, you
will have both USB serial for "ashing and USB JTAG for debugging
the SoC internally through software implementation.

ESP32 Download Mode
To "ash the !rmware on any ESP32, you will need to be in “download
mode,” handled by the ROM boot stage (1st-stage bootloader); other-
wise, the boot process will continue and will try to read the "ash
bootloader (2nd-stage bootloader) and then the application.

The download mode is activated by pulling down the BOOT GPIO
pin (usually GPIO0 or GPIO9), holding it there and then resetting
the SoC. Once download mode is active, the ESP32 can receive the
!rmware via the UART and store it in the "ash.

Internal USB Serial and JTAG
In some of the most recent SoCs, two new and extremely useful
functionalities have been introduced: USB serial and JTAG.
These improve development and reduce your bill-of-materials
by removing the external USB-to-Serial, and will also save some
pins (especially for the JTAG).

When using the UART for "ashing, you will need to use two GPIO
pins for UART (TX and RX) and one GPIO pin to enable download
mode. You’ll also need to connect the reset pin to the reset circuit
with the download mode pin. On the other side, by using the inter-
nal USB serial, only the D+ and D- GPIOs are needed because the
automatic download mode is handled internally.

Supported SoCs are:

 > ESP32-C3
 > ESP32-S3 (also includes USB host and device)
 > ESP32-C6
 > ESP32-H2
 > ESP32-P4

To use the USB Serial and JTAG on the supported SoCs, you need
to add a USB connector to the D+ and D- or a test jig connected
directly via USB cable to the computer. Please see the datasheet
for the USB pins. This means that on each ESP32 you have, inter-
nally (on the aforementioned SoCs), the USB serial and JTAG for
"ashing and debugging, with no extra cost or external hardware.

The ESP32-S2 has no USB serial or JTAG, but it has USB-OTG (host
and device), so you can "ash using DFU (device !rmware upgrade)
instead of USB serial.

BACKGROUND

By Pedro Minatel, Espressif

If you’re new to embedded development, you’ll get familiar with the terms
burning, "ashing, and writing the !rmware into some microcontroller or "ash

memory. This is a basic step for programming the application on the device. In this
article, we take a deeper look how this can be done for ESP32 controllers during the

development and production phase in an e$cient and secure way.

Burn, Firmware, Burn!
Flashing your ESP32

30 www.elektormagazine.com

If you are skeptical about this command, good news: You can
also "ash !rmware built with ESP-IDF by using the idf.py -p !ash
command.

Here are some of the ESPTool features you can use beyond just
"ashing !rmware:

 > Perform full chip "ash erase or erase just a region of the "ash
 > Read and write from "ash memory and RAM
 > Run application code in "ash
 > Read MAC addresses from OTP ROM
 > Read the Chip ID from OTP ROM
 > Dump headers from a binary !le (bootloader or application)
 > Merge multiple raw binary !les into a single !le for later
"ashing

 > Get some security-related data

If you need to "ash the !rmware during manufacturing for mass
production, you can use ESPTool to automate the "ashing proce-
dure through a script.

Flash Download Tools
Flash Download Tools is a graphical Windows-only application that
you can use for "ashing without the need to install the ESP-IDF
or run ESPTool at the command line. The GUI is quite simple and
easy to use and does not require installation (Figure 1).

To use Flash Download Tools, you need to select all the binaries
you want to "ash, and the address in "ash memory for each binary.

Is That Secure?
If you have security concerns about shipping your product with
a serial and JTAG interface built-in, both features can be disabled
using the DIS_USB_JTAG and DIS_USB_SERIAL_JTAG eFuses during
the mass production phase. This action is not reversible, so don’t
play with it during development.

Another interesting eFuse is the USB_EXCHG_PINS. This eFuse will
exchange USB pins D+ and D- in case you accidentally swapped
pins in your hardware design.

It Is Time to Flash the Device!
There are di%erent ways to "ash the ESP32. You must decide which
way is more convenient, depending on the project’s characteristics
or production stage. The following is an overview of all the possi-
bilities available for "ashing the ESP32.

ESPTool
The !rst and most-used tool is ESPTool [1]. ESPTool is a Python-
based tool and the main tool for "ashing the !rmware. It’s integrated
into the ESP-IDF, so this is the tool used when you "ash the !rmware
via command-line-interface (CLI) or via the IDE.

To use the ESPTool directly from the CLI, you need to set some
parameters, like this:

esptool.py -p -b --before default_reset --after hard_reset --chip write_
!ash --!ash_mode --!ash_size --!ash_freq

Figure 1: Flash Download Tools is Espressif ’s
o"icial GUI-based flashing application, which
you can use without the need to install ESP-
IDF or run ESPTool from the CLI.

Figure 2: Flash Download Tools in factory mode.

Guest edited by 31

Figure 3: ESP Launchpad accessed directly from the Chrome browser.

Figure 4: ESP Launchpad can be customized using some additional configuration files.

Flash Download Tools also works in factory mode. In this mode,
you can select multiple serial interfaces and "ash the !rmware
simultaneously in just one click (Figure 2).

ESP Launchpad
Sometimes, you don’t want to install or run an application on your
computer, and you prefer to use only web-based applications. In
this case, you can try ESP Launchpad directly from your Chrome
browser.

ESP Launchpad [2] is a web application based on esptool-js, which
allows you to "ash the !rmware directly from the browser without
any installation, thanks to the WebUSB API. You can also monitor
the console output and erase the "ash (wiping all data from "ash).

ESP Launchpad is open-source software and can be custom-
ized (Figure 3) with some additional !les to tell it where the
!rmware !le is stored and the supported target devices for that
!le (Figure 4). Thus, you just need to send the link to your customer
and the "ashing process will be simple and intuitive.

32 www.elektormagazine.com

The target microcontrollers that support update via UART are:

 > ESP32
 > ESP8266
 > ESP32-S2
 > ESP32-S3
 > ESP32-C3
 > ESP32-C2
 > ESP32-H2
 > ESP32-C6
 > ESP32-P4

Over-the-Air Update
Finally, the over-the-air (OTA) update is another great solution
for !rmware updating, especially in the !eld. This technique is
often used to update !rmware via the internet or any local network
without dealing with the individual !rmware updates physically.

The main advantage of the OTA update comes in when you have
any issues with your current !rmware version or need to add a
new functionality to it. You can do it remotely and in bulk, updat-
ing thousands of devices at the same time. This will save you time
and money.

To get started with OTA, you can check the examples under the
ESP-IDF project on GitHub or in your local installation.

Bonus: ESP USB Bridge
This is another ESP-IDF project that can help you during develop-
ment, especially if you are using an ESP32 without USB serial or
JTAG, such as the ESP32, ESP32-C2, and ESP32-S2.

You can turn any ESP32-S2 or ESP32-S3 into a serial-to-USB and
JTAG device and use it for "ashing and debugging another ESP32.
You just need to "ash any ESP32-S2 or ESP32-S3 with ESP USB Bridge
and connect the GPIOs to the target microcontroller (Figure 6).

You can use this project alongside all the "ashing tools, such as
ESPTool, Flash Download Tools, and ESP Launchpad. You can also
use the USB-MSC (Mass Storage Class) by dropping the binary in UF2
format onto the USB mass storage that appears when you connect
the ESP-USB-Bridge to your computer.

Example of the TOML File
In the TOML con!guration !le, you can add the URL for the binaries
and specify the targets for each binary. It’s important to note that
the binary !le must be a single !le, meaning the merged version
including all required binaries. You can merge them using ESPTool
or Flash Download Tools. Here’s an example TOML:

esp_toml_version = 1.0
firmware_images_url = "https://espressif.github.io/
esp-matter/"
supported_apps = ["light","light_switch"]
[light]
chipsets = ["ESP32","ESP32C3","ESP32C6","ESP32H2"]
image.esp32 = "esp32_light.bin"
image.esp32c3 = "esp32c3_light.bin"
image.esp32c6 = "esp32c6_light.bin"
image.esp32h2 = "esp32h2_light.bin"
ios_app_url = "https://apps.apple.com/app/esp-rainmaker/
id1497491540"
android_app_url = ""

[light_switch]
chipsets = ["ESP32","ESP32C3","ESP32C6","ESP32H2"]
image.esp32 = "esp32_light_switch.bin"
image.esp32c3 = "esp32c3_light_switch.bin"
image.esp32c6 = "esp32c6_light_switch.bin"
image.esp32h2 = "esp32h2_light_switch.bin"
ios_app_url = "https://apps.apple.com/app/esp-rainmaker/
id1497491540"
android_app_url = ""

After hosting this !le on a public server, you can use the URL
combined with the ESP Launchpad URL [3].

A useful case for ESP Launchpad is as a !rmware update tool to be
used by the !nal customer, after sale, when no over-the-air updates
are available.

ESP Serial Flasher
Imagine you need to "ash your ESP32 device through another
device, or host microcontroller. You might look at the ESP Serial
Flasher project. In this project, you can use a host microcontroller
to "ash a target ESP32, or you can use one ESP32 to "ash another
ESP32 (Figure 5).

One common application for this feature is when the ESP32 is being
used as a radio coprocessor, and you want to "ash a new !rmware
version via the host device.

Currently, we support the following host controllers:

 > ESP32
 > STM32
 > Raspberry Pi
 > Any MCU running Zephyr OS

Figure 5: With the ESP Serial Flasher project, you can use a host
microcontroller to flash a target ESP32, or even use another ESP32 as the
host for flashing.

Guest edited by 33

About the Author
Pedro Minatel is a Developer Advocate at Espressif. He holds an
electronics technical degree and an associate’s degree in informa-
tion technology. Pedro started working for Espressif in 2021, but
he has been an active community member since 2014, publishing
articles and presenting talks at conferences about IoT and the maker
community. Currently, he is responsible for the annual Espressif
Developers Conference, known as the DevCon.

 Related Products
 > ESP32-C3-DevKitM-1
www.elektor.com/20324

 > LILYGO T-Display-S3 ESP32-S3 Development Board
(with Headers)
www.elektor.com/20299

Many Ways
In the world of ESP32 microcontrollers, there are many ways to
upload new !rmware to your ESP32. While ESPTool may seem
like the go-to solution, it is important to keep in mind that certain
scenarios call for more advanced tools featuring graphical user
interfaces (GUIs) or simpli!ed "ashing processes that cater to
users across various platforms without requiring any software
installation.

This article aims to give ideas for improving product development
and production. It also aims to empower individuals with the ability
to easily "ash or update !rmware to the latest versions, regardless
of their technical background or the platform they are using.

230625-01

Questions or Comments?
If you have questions about this interview, feel free to e-mail the
author at pedro.minatel@espressif.com or the Elektor editorial team
at editor@elektor.com.

[1] ESPTool: https://github.com/espressif/esptool
[2] ESP Launchpad: https://espressif.github.io/esp-launchpad/
[3] ESP Launchpad URL: https://espressif.github.io/esp-launchpad/?flashConfigURL=

https://espressif.github.io/esp-matter/launchpad.toml

WEB LINKS

Figure 6: ESP USB Bridge is an ESP-IDF project utilizing an ESP32-S2 or an ESP32-S3 to create a link between a computer (PC) and a target
microcontroller (MCU).

34 www.elektormagazine.com

lektorX

www.elektormagazine.com/gold-member

 The Elektor web archive from 1974!
 8x Elektor Magazine (print)
 8x Elektor Magazine (digital)
 10% discount in our web shop and exclusive off ers
 Access to more than 5000 Gerber fi les
 Free shipping within US, UK & Ireland

Take out a
membership!

GOLDGOLD
membe r s h i p

 10% discount in our web shop and exclusive off ers 10% discount in our web shop and exclusive off ers

Join the
Elektor
C mmunity

Use the coupon code:

ESPRESSIF20

20%20%
discount
on the fi rst year of your

membership

The Dream
In this article, we will try to provide you with the essential tools for
initiating wireless projects, focusing on core hardware, communica-
tion network structures, and key considerations.

We started our journey trying to build a network of inexpensive, small,
and wireless “help” buttons, in the hopes that we could scatter them
around our extended family members’ homes, to allow easy contact
with the rest of the family in the event of an emergency. On the most
abstract level, each button requires the ability to record data — whether
the button’s been pressed — and the ability to transmit that data in some
way to something that can make use it. We also needed to develop
a gateway to the internet that could simultaneously monitor the local
network while relaying alerts to remote family members.

This is a seemingly simple task, but it’s built on the same foundations
of a lot of other cool real-world projects. For instance, using the same
systems as the button for a short-range communication network, but
adding sensors for recording environmental data, could be the basis

of an e"icient local weather monitoring station. The home use we
created would answer questions such as, “what’s the current and high/
low temperatures in the attic, the basement, and the chicken coop
outside?” From that data, we could decide whether to automatically
activate fans to cool those spaces, or close their vents to keep them
insulated. Several of these simple and inexpensive weather monitoring
stations working in tandem across a farm could provide invaluable
information to better care for crops.

Increasing the wireless range and adding in relevant sensors such
as accelerometers and GPS yields a hobbyist model rocket tracker
and flight data logger. Drastically increasing the range could yield
a high-altitude balloon telemetry and tracking system. Conversely,
drastically decreasing latency at low range is useful for electronic
music system design (i.e., making small wireless pedals that commu-
nicate with whatever microcontroller is at the center of music produc-
tion). Really, a lot of interesting things become possible with just a
few common methods for communication, data logging, and signal
processing. So, what are the fundamental requirements at the center
of these types of projects?

The Technicals
To address the requirements mentioned earlier, the circuits must be
compact, lightweight, and have e"icient power management. Further,
every project should have the ability to communicate wirelessly via a
network — for example, ad hoc “mesh” networks or “hub and spoke”
networks, etc. (we’ll get to what these are shortly). These networks

CASE STUDY

By Sorin Jayaweera, GXB Ventures

What do you get when you mix a
push button and an antenna? A

rocket computer, obviously!

Practical Applications and Considerations When Creating
Wirelessly Enabled Solutions

From Rockets From Rockets
to Cellosto Cellos

36 www.elektormagazine.com

Espressif chips have integrated Wi-Fi and Bluetooth, reducing the
complexity of our overall system. Using the boards’ built-in antennas
works for many relatively short-distance local IoT projects, as range
can be extended by using several chips and forwarding messages. To
be fair, not all commercial boards worked well — doing an ESP-NOW
(Wi-Fi) range test using an ESP-WROOM32 board vs an ESP32-C3
board yielded ranges of 3 meters and 80 meters, respectively. But,
after narrowing down the alternatives, we really enjoyed integrating
the ESP32-C3 into our wireless projects. This was largely due to the
chip’s miniscule size, specific support for our types of projects, low
power consumption, and integrated communication with a well-de-
signed printed antenna.

Now that we had our main “computer,” all that was left was to design
the PCB and additional sensors and I/O for each project. For the
short-range call buttons, we decided to make each button have its
own C3 module operating on coin cell batteries, turning on only when
the button was pressed. In order to receive the help signals, we also
had an always-listening gateway, which then connected to the general
internet and sent a text message to us. This is a small version of a
“hub-and-spoke” network (Figure 1), with always-listening gateways
connected to sensors that only turn on and transmit when required.
Because each button only has to turn on when broadcasting its own
signal, this greatly optimizes battery life. We implemented this system

can be at a relatively small scale — for example, the help button — or
long-range for the rockets, but the overall structure of these networks
is similar.

For the help buttons and subsequent projects, we ruled out powerful
mini-computers such as the Raspberry Pi — they can’t tolerate hard
shutdowns and have a relatively large energy requirement. Initially, we
used Teensy controllers, which are really powerful Arduino-compati-
ble microcontrollers for signal processing and are a great solution for
many problems. While they are very adaptable, they require additional
peripherals for everything they need to do, especially wireless commu-
nications, and that gets clunky as projects expand. Because long-range
wireless communications are so important, we started looking for
pre-made integrated solutions to minimize the complexity of our setup.

We tried the Heltec LoRa boards, as those have Wi-Fi, Bluetooth, and
LoRa built in. While they seemed promising, we ran into numerous
struggles trying to get the boards to work, and found their forums
and technical support to be unhelpful. Example code they provided
wouldn’t compile properly without figuring out how to edit the source
and linked libraries ourselves, and even the shipped antennas were
mistuned for the LoRa frequency bands for which they were supposed
to be optimized. We kept looking, and discovered the various Espressif
chips and the development boards that use them.

Point to Point

Node Base Station
(Gateway)

Hub & Spoke

Node Router Base Station
(Gateway)

Mesh

Node Node

Node

Node

Node

Node

Node Figure 1: Network topologies.

Requirement Comparison

Board Cost (USD) Power (mW) Pros Cons
Arduino

$15+ ~400 + Easy to learn
+ Rapid to prototype

- No multitasking
- No communications
- (Relatively) large

Teensy $15–40+ ~800 + Small + Very Fast
+ Extensive audio support
+ Active community

- No integrated communication
- Large energy requirement

Raspberry Pi
$15–80+ ~1200 + A true computer

+ Multi-threading
+ Any coding language
+ Integrated wireless (Bluetooth, WiFi)

- (Relatively) expensive
- Can’t tolerate hard shutdowns
- Higher energy requirements

than microcontrollers
- Larger than microcontrollers
- Large power requirement

ESP32

$2–$5+ 6–300 + Arduino-compatible
+ Small (dev boards) & smaller
(modules)
+ Integrated wireless (WiFi, Bluetooth 5 /

BLE)
+ Inexpensive + Optimized for low
energy

- Only connects to 2.4 GHz Wi-Fi
- ESPNow & ESP-WiFi-Mesh is

proprielary

Guest edited by 37

We tried to get as much relevant beginner information into this admit-
tedly brief article as possible. For more detailed information on network
structures, the basics of using Espressif systems, etc., watch the video
of our talk, DevCon23 — From Rockets to Cellos: Real-world Appli-
cations of ESP32 Series and Dev Board Variants, on the Espressif
website or on YouTube [1].

230627-01

by using only ESP-NOW from each end node to the always-listen-
ing gateway, which forwards messages to the internet (via Ethernet).

Another highly useful network topology is called a mesh network. In
a mesh network, every node is always on. Messages get forwarded
through the most direct route to an end destination. Meshes have
more redundancy; if a single node fails, the rest of the system can keep
working by changing the delivery route. The short-range version of
a mesh network is relatively easy to put together using the painless-
Mesh library or an ESP-WIFI-MESH network with Espressif boards,
all of whose source codes are easily found online.

For long-range projects, however, Wi-Fi is not a viable solution. Our
favorite approach uses LoRa — a communication protocol with a low
data rate and low power consumption, but the potential to have several
kilometers of reach. LoRa has a very low data rate and is only half-du-
plex (most transmitters can’t send and receive at the same time), which
makes mesh networks challenging.

There are several other potential communication methods, as detailed
in the Wireless Communication Comparison text box. Please note
that we did not test every method, mainly getting information from
the internet before choosing what to work with. We did compile our
own data for LoRa, ESP-WIFI-MESH, and ESP-NOW. Other solutions
are harder to work with, but are applicable to more formal projects.

For the rocket-tracking/data-logging system, we used LoRa- instead
of Wi-Fi-based communication, as we needed stablity and long range.
For LoRa peripherals, we recommend either the Hope RFM95W or
the Reyax RYLR406. The Reyax (UART-based) is very user-friendly,
coming with a good antenna and sending data with relatively simple
AT commands. It doesn’t have as much pre-made network structure
support, but works perfectly for simple point-to-point communication.
Alternatively, the HopeRF board (using SPI) has a lot more support
with radiolib or the radiohead library, which have implementations for
(slightly shaky) ad hoc mesh networks.

We used a mesh topology for the rocket systems, as, that way, we could
launch multiple rockets and have those in the air getting broadcasts
from the grounded ones, and then transmitting the locations of every
rocket to our base station. Because we weren’t launching more than
three rockets at a time, LoRa’s slow speed and inability to transmit
while listening wasn’t detrimental to our goals. However, for larger-
scale projects, it would be good to look into using LoRaWAN or other
large hub-and-spoke networks that support full-duplex.

[1] “DevCon23 - From Rockets to Cellos: Real-world Applications of ESP32 Series and Dev Board Variants”:
https://youtu.be/jxPUkmaYp2c

WEB LINK

900 Mhz Modem

In
do

or
 to

 L
in

e
of

 S
ig

ht
 R

an
ge

(L
og

rit
hm

ic
 S

ca
le

)

10 km
(or more)

LONG

100 m
MEDIUM

10 m
SHORT

1 kBps
LOW

1 MBps
HIGH

0 m

Data Rate

ES
P-

N
O

W

BL
E

ES
P-

W
iF

i-M
es

h

W
iF

i

Zi
gb

ee
Lo

Ra

Bl
ue

to
ot

h
5

Wireless Communication Comparison

Technology Data rate (Kbps) Indoor (line-of-
sight) range

Wi-Fi 2.4 GHz
(≠ 5.2 GHz) 9,000 25 m (100 m)

ESP-WiFi-MESH 1,000 50 m (200 m)
Bluetooth 5 (audio) 260 50 m (240 m)
Bluetooth LE (low
bit rate) 120 70 m (500 m)

Zigbee 2.4 Ghz 30 70 m (250 m)
LoRa 915 MHz 30 1.2 km (20 km)
ESP-NOW 1 70 m (500 m)
900 MHz modem 25 to 7,000 50 m (45 km)

38 www.elektormagazine.com

will discuss what issues are faced in each
step and how we at Espressif make it easy
for our customers.

Device Secrets and Unique Per-
Device Data
The older MCU-based device manufactur-
ing processes were relatively straightforward.
After flashing the firmware onto the MCU and
subjecting it to a series of quality assurance
tests, the device was ready for deployment
in the field. However, the landscape evolved
significantly when connectivity came into the
picture. Nowadays, most IoT products demand
more than just a unique MAC address; they
require individualized credentials unique
to each device. Some of these are secrets
needed to communicate securely with remote
servers, some are secrets used for secure
onboarding of the device, and some are
secrets specific to the MCU — such as the

The internet of things (IoT) has seamlessly
integrated into our daily lives. Thanks to
advancements in sophisticated development
frameworks, creating new IoT products has
become notably more accessible. As the IoT
industry continually evolves with ongoing
innovations, the applications are getting
more complex. One important aspect of this
evolution is that people are becoming more

concerned about security. In the market, we
now have stricter security standards, each
with its own requirements. This has made
the manufacturing process more compli-
cated, requiring a thorough security check
at every step.

In this article, we shall go over several
aspects of secure IoT manufacturing. We

BACKGROUND

By Aditya Patwardhan, Espressif

The increased intelligence of the devices at the
edge, and particularly, their continuous evolution,
has required higher levels of security and constant
dynamic adaptation by manufacturers. Here we
see how Secure IoT Manufacturing of Espressif
responds to these changing needs.

Secure
IoT Manufacturing
Why and How

40 www.elektormagazine.com

secret used to encrypt the data-at-rest that’s
stored in the flash.

Cryptography based on public key infrastruc-
ture (PKI) plays an important role in device
security. Typically, a device has a public key
that directly or indirectly can authenticate the
server it communicates with, a public key that
can verify the authenticity of any new firmware
that is being installed on the device, and a
public-private key pair that forms a unique
device certificate that is registered with the
cloud server or central database to enable
authentication of the device from the cloud
or a client. Additionally, the device also needs
to store sensitive information, such as Wi-Fi
network credentials.

With this typical case, you can see that the
following are the key security requirements:

1. Ensure that the public keys that are used to

authenticate other entities are not tampered
with.

2. Ensure that the device’s private key is gener-
ated in a secure environment with a good
quality random number generator.

3. Ensure that the device’s private key is
securely stored on it in such a way that it
doesn’t fall prey to attackers, as it forms the
device’s identity.

4. The device certificate is signed by an entity
that is trusted to perform certificate signing.

5. Ensure that sensitive information, such as
Wi-Fi credentials, is stored in flash memory
in an encrypted format so that simple flash
reads won’t reveal this information.

This translates into more fundamental security
requirements:

1. Ensure that the device executes only

the trusted firmware so that it can’t be
programmed with malicious code that can
leak sensitive data.

2. Ensure that each device can encrypt its
flash memory; preferably with a unique
encryption key so that even if this key is
found, the entire fleet of the devices is
not compromised. Hence, it is preferred
to generate this unique encryption key
randomly inside the chip, and not have it
accessible outside the chip.

3. Ensure that the manufacturing process
generates a private key on the chip, and that
the private key is not accessible externally.

4. Ensure that the manufacturing process
works with trusted hardware or a cloud
service for certificate signing.

Complexity in Manufacturing
While modern microcontrollers, including the
ESP32 series, provide the security features
required to implement the above require-
ments, there is still great care that needs to be
taken at the time of manufacturing. Typically,

contract manufacturers where this type of
device programming takes place might not
have know-how of the best security practices,
and the complexity of secure manufacturing
can be overwhelming.

Espressif provides multiple solutions to
simplify this.

Auto Secure Boot Enablement
Secure boot is the feature that ensures that
the hardware authenticates the firmware that
is being executed on the chip upon each boot.
For that, the chip is locked with a public key
that can verify the signature present in the
signed firmware for authenticity. Espressif ’s
ESP-IDF provides for enabling a secure boot
in the second-stage bootloader. This ensures
that the bootloader, when programmed on the
chip and executed the first time, programs the
one-time-programmable (OTP) memory with
the public key that is used by the hardware for
secure boot. The bootloader can also take care
of disabling the debug and programming inter-
faces to lock the chip. This way, your manufac-
turing process doesn’t have to take responsibil-
ity for programming the OTP correctly in order
to secure the device. This can all be handled
by the developers, who understand security
better, than those who manufacture the device.

Figure 1 demonstrates the transitive trust
model for secure boot.

Figure 1: Diagram of the transitive trust model for secure boot.

Guest edited by 41

Secure Certificate
Pre-Provisioning
For the device certificate, we discussed how
it’s important to protect private key gener-
ation and storage. It’s also important to get
the device certificate signed using a trusted
entity — a certificate authority (CA). Espres-
sif implements a secure certificate provision-
ing process in its factories, which provides a
way for customers to order pre-provisioned
modules.

In this module pre-provisioning process, there
are three entities that work together. A provi-
sioning host, which is a PC that works with an
ESP32-series chip or module for provisioning.
The provisioning host is connected to a local
or cloud hardware security module (HSM),
which holds the certificate authority and can
sign any certificate without leaking the private
key used for this signing. Most of the HSMs
are also capable of generating non-repudiable
logs that can provide assurance of how many
certificates are signed by the HSM.

The process is shown in Figure 3.

The device certificate’s private key is gener-
ated on-chip and never leaves it. The host
provides certificate parameters such as valid-
ity time, common name, etc., and receives the
certificate signing request (CSR). The CSR is
then sent to the local or cloud HSM to get a

the software bootloader can generate the
flash encryption key in the chip using its
true random number generator (TRNG),
and programs it into the OTP memory with
read-out protection enabled. The software
bootloader can optionally also encrypt the
firmware and other required flash contents
that need to be encrypted upon first boot.

This way, the flash encryption, when enabled
through the software bootloader, provides a
way to generate a per-device random flash
encryption key and enables flash encryption
securely that can be used to protect any sensi-
tive device data, such as Wi-Fi network creden-
tials or the device certificate’s private key.

Figure 2 shows a simplified version of flash
encryption.

Once the secure boot feature is enabled, the
chip can not only execute trusted firmware,
but the trusted firmware can hold the various
public keys mentioned above, and these public
keys can’t be modified forcefully.

Auto Flash Encryption
Enablement
We discussed the requirement of having a
unique, symmetric encryption key in the
device, used to encrypt the flash memory.
ESP32 series microcontrollers have a flash
encryption feature whereby the hardware
supports a “software non-readable” flash
encryption key in the OTP. This key can trans-
parently encrypt and decrypt flash contents
dynamically. ESP-IDF’s software bootloader
provides runtime enablement of this feature,
whereby upon the first boot of the device,

Figure 2: Diagram of a simplified version of flash encryption.

Figure 3: Flow diagram of the secure certificate pre-provisioning process.

42 www.elektormagazine.com

also a Connectivity Standards Alliance (CSA)
approved Product Attestation Authority, and
has the ability to pre-provision the chips and
modules with the Device Attestation Certifi-
cates (DAC) required for building Matter-com-
pliant devices. In addition, Espressif also
assists in custom firmware programming and
unique data preprogramming, which greatly
simplifies the manufacturing of IoT devices.

230638-01

Everything Comes Together
Security requirements and per-device unique
data programming make IoT device manufac-
turing complex. Espressif o"ers great flexi-
bility in the manufacturing process, which
helps customers enable security features
such as secure boot and flash encryption,
in the Espressif manufacturing line without
compromising security. Espressif ’s module
pre-provisioning process enables secure
device certificate programming. Espressif is

signed certificate. This certificate then is sent
to the device, and the device is then locked
using secure boot and flash encryption. Many
of the new ESP32-series chips also have a
dedicated “Digital Signature” (DS) peripheral,
which protects the device private key with a
special hardware block. This DS peripheral
can provide certificate operations directly
with the encrypted private key, ensuring that
the plaintext private key is inaccessible to the
software, either.

Other Per-Device Unique Data
Beyond these security artifacts, the device may
also need to have other per-device unique data,
such as device ID. Espressif provides easy-to-
use tools to generate per-device data binaries
from a CSV file that has unique per-device data
in tabular form. Please check out [1].

[1] Manufacturing utility: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/mass_mfg.html
WEB LINK

About the Author
Aditya Patwardhan is a Software Engineer at Espressif with over four years of
experience. His areas of interest span systems, security, machine learning, and the
exciting world of IoT. Aditya is deeply passionate about staying up to date with new
developments in the security domain, and leveraging these developments to create
robust and secure IoT applications.

Guest edited by 43

In addition to its convenience and ease of
use, the Smart ESP8266 remote is also a
great solution for older devices that may not
be compatible with traditional smart home
technology. With the ability to read and save
signals from traditional remotes, the Smart
ESP8266 remote allows you to control older
devices that may not have the capability to
connect to the Internet or other smart home
systems. This makes it a cost-e"ective alterna-
tive to upgrading your devices or purchasing
expensive smart home devices.

The IR LED and IR receiver are used to trans-
mit and receive IR signals respectively, which
are used to control the household devices. The
project can read and save signals from tradi-
tional remotes, allowing the user to control
older devices that may not have the capabil-
ity to connect to the internet or other smart
home systems.

In addition to the hardware components, the
Smart ESP8266 remote project also requires
software to function, which you will find at [2].

The Smart ESP8266 remote o"ers several
benefits such as convenience and ease of use,
cost-e"ectiveness and flexibility. It eliminates
the need to purchase expensive smart home
devices or upgrading older devices, making
it a cost-e"ective alternative. The project is
also flexible enough to be easily modified or
customized to work with di"erent devices and
di"erent IR protocols, making it a versatile
solution for controlling di"erent devices with
a single app.

230656-01

Espressif is a manufacturer of well-received
SoC integrated circuits and wireless trans-
mission modules, many of which are avail-
able at TME. Thanks to their compact size
and low-energy consumption, the products
from Espressif can be successfully used both
in consumer and industrial electronics.

Below, you can read about a device based on
the ESP8266 module. It is an amateur project
created by a participant of a TechMasterEvent
contest. The entrants were asked to design
an electronics project which seeks to make
life easier.

You can find the ESP8266 module as well as
several other components which may come

in handy when you build your IoT projects
(single-board computers, communication
and memory modules, displays and much
more) at [1].

ESP8266, IR LED and IR
receiver
Smart ESP8266 remote is a project that aims
to make controlling your home devices a
breeze. With the use of an ESP8266, IR LED
and IR receiver, this project eliminates the
need for multiple remotes for di"erent devices
such as air conditioners or televisions. The
project connects to a phone app, allow-
ing users to easily send commands to their
devices and even save the signals sent by
their current remotes for future use.

PROJECT

Contributed by Transfer Multisort Elektronik Sp. z.o.o.

With each passing year, the concept of SmartHome is
becoming increasingly popular, and the availability of
solutions that help us manage our living space more
e!ciently is growing. In addition, some products that
appear on the market o"er compatibility with older devices,
thanks to which we can use the existing equipment together
with the latest technological advancements. Remote
control of home appliances and the automation of various
processes helps improve energy e!ciency, protect the
environment, increase our comfort and save money. The
Smart ESP8266 remote project developed for a contest held
by TechMasterEvent combines all these advantages.

A Simpler
and More
Convenient Life
An Amateur Project Based on the Espressif ESP8266 Module

[1] TME shop: https://tme.eu
[2] Source code for this project: https://techmasterevent.com/project/how-to-make-old-devices-smarter-with-a-esp8266

WEB LINKS

44 www.elektormagazine.com Partner Content

Your official authorized distributor
in Europe for Espressif Systems

empowered

connectivity

everywhere

www.macnica-atd-europe.comsales.mae@macnica.com

+49 (0)89 899 143-11

Macnica ATD Europe

Blynk App Builder for iOS and Android
Enables the creation of quick prototypes and fully
functional standalone apps without coding skills. In
constructor mode, you can choose from 50+ custom-
izable UI elements like buttons, sliders, charts, maps,
gauges, etc., and drag and drop them to the canvas to
create a custom UI for your connected product. You
can set up multiple app pages, use various interac-
tions, customize images, fonts, colors, and icons to
make your app unique.

Web Dashboard Builder
It has similar architecture for creating historical and
real-time data visualizations, and for controlling and
monitoring devices using pre-built UI elements. The
cool thing is you can build independent interfaces for
mobile and web, based on your needs.

What is included in Blynk IoT?
Blynk is a low-code IoT software platform featuring
cloud, "rmware libraries, no-code native mobile app
builder, and a web console to manage it all. You get
Wi-Fi device provisioning, data visualization, automa-
tions, noti"cations, OTA updates, and a robust user
and device management system [1].

SOFTWARE

Contributed by Blynk Inc.

What if you could develop a mobile app
without writing a line of code, brand it, and
publish to app stores within a month? Launch
production-grade IoT software without
hiring software engineers? With Blynk IoT it’s
possible within a month, not years!

How to Build IoT Apps
without Software Expertise

With Blynk IoT Platform and Espressif Hardware

Figure 1: No-Code
Interfaces created

with Blynk.

Blynk firmware
library supports:
• ESP32
• ESP32-S2
• ESP32-S3
• ESP32-C3
• ESP8266
• and others

46 www.elektormagazine.com Partner Content

 connection to Blynk Cloud. Choose Blynk.Edgent [3]
for single-MCU devices. If you’re o#oading connec-
tivity to a secondary MCU, go with Blynk.NCP [4][5].

Both routes require minimal implementation e$ort,
with code examples provided by Blynk. For the
dual-MCU setup, it’s a ready binary for the NCP and a
lightweight library for the primary MCU communi-
cating with the Network Co-Processor over the UART
interface.

Your journey from device setup to full-scale IoT infra-
structure and app launch can take just weeks [6].

230659-01

Advanced User Management System
It helps keep everything structured, even at enterprise
scale. You can create a multi-level organization struc-
ture and manage devices and user’s roles, permissions,
passwords, and much more.

Built-in Device Lifecycle Management
The functionality covers all needs related to token
management, Wi-Fi provisioning with dynamic token
generation, adding devices, and assigning them to
users. It offers reliable and secure OTA firmware
updates managed in a simple interface.

No-Code Automation Scenarios
Can be set based on date, time of the day, user actions,
or device state. You can notify users about important
events on the hardware via pushes, in-apps, emails,
or SMS.

How to Connect Your ESP to Blynk?
What’s the Integration E!ort?
Depending on your hardware setup, you can go one of
the two routes for connecting your Espressif device.
Both enable all the Blynk IoT features out of the
box, including Wi-Fi provisioning, OTA, and secure

[1] Official website: https://bit.ly/blynk-iot
[2] Blynk.Console — create your free account: https://bit.ly/blynk-cloud
[3] Blynk.Edgent documentation: https://bit.ly/doc-edgent
[4] Blynk.NCP documentation: https://bit.ly/doc-ncp
[5] What is Blynk.NCP: https://bit.ly/blynk-ncp
[6] Ready-made weather station project to play around: https://bit.ly/weather-blueprint

WEB LINKS

Figure 2: Blynk Drag-n-
Drop App Builder.

Get 30% o!
the Blynk PRO plan

for the first year!
Promo code: ELEKTOR

Valid before Jan 31, 2024. [2]

Guest edited by 47Partner Content

control devices. They play a leading role
in interoperability in connected home
products with compatible Matter solutions
(through WiFi and Thread in particular).
Espressif’s solutions are also used in the
industrial sector for remote monitoring,
data collection, and machine control. In
addition, Espressif’s products are present
in the healthcare sector, where they power
connected medical devices and fitness
tracking devices.

As a global electronics partner, Steliau has
the ability to offer solutions integrating
Espressif’s products for touchscreen control.
Thanks to its expertise, Steliau Technology
is able to design integrated solutions in
which Espressif’s products control the touch
screen, with a number of success stories to
our credit, particularly for screen sizes up to
7 inches. Our ability to o"er a global solution
is reinforced by speci#c technical support
covering all these areas.

230661-01

Any requests?
Steliau is available to assist customers with
any queries they may have. Please contact
remi.krief@steliau-technology.com for any
request about Espressif solutions.

Founded in 2018, Steliau Technology [1]
de#nes itself as a value-added distributor
of electronic solutions. Human-Machine
Interfaces, screens and touch solutions,
connectivity & IoT are all areas of exper-
tise largely mastered by Steliau and which
give it an already well-established reputa-
tion in the electronics market.

Steliau Technology is well-known for
its strategic partnerships with leading
electronics companies, enabling it to
strengthen its position in the #elds of IoT
and connectivity. Espressif and Steliau
Technology share a long-standing partner-
ship, as the #rst distributor, consolidated
over the years. As the o$cial distributor
for France and Italy, Steliau Technology is
the one-stop shop for Espressif solutions.

Steliau Technology is perfectly equipped
to o"er full support for the entire range
of Espressif products, both in terms of
hardware and embedded software. The
team has in-depth technical expertise
covering all aspects of connectivity, from

hardware design to software programming.
This means that Steliau Technology is able
to provide full support to customers, ensur-
ing robust and high-performance connec-
tivity solutions.

This strong partnership guarantees our
customers privileged access to the best
connectivity solutions on the market, such
as the latest Espressif generations: ESP32-
C5, ESP32-C6, ESP32-P4, ESP32-S6.

Steliau Technology through its partner
Espressif provides essential electronic
components for wireless connectivity and
IoT in a variety of markets and sectors,
contributing to the constant evolution of
the technology.

IoT Solutions and More
First of all, in the #eld of the Internet of
Things (IoT), Espressif’s Wi-Fi and Bluetooth
microcontrollers are widely used. These
components are vital for smart home
applications such as connected thermo-
stats, security cameras and lighting

PORTRAIT

Contributed by Steliau Technology

Steliau Technology is an innovative company specializing
in electronic solutions. The company stands out for its

engineering expertise and passion for innovation. Steliau
Technology, through its partner Espressif, provides

essential electronic components for wireless connectivity
and IoT, such as the ESP32-C5, ESP32-C6, ESP32-P4,

ESP32-S6 and many more products.

[1] Steliau Technology: https://steliau-technology.com/en
WEB LINK

A Value-Added
Distributor for
IoT and More

Source: Adobe Stock

48 www.elektormagazine.com Partner Content

FEATURE

Contributed by M5Stack

As a world-renowned modular IoT development platform based on
ESP32, M5Stack builds hundreds of controllers, sensors, actuators and
communication modules in modularized style that can be connected via
standard interfaces. By stacking modules with di!erent functionalities,
users can accelerate product veri"cation and development.

Quick & Easy
IoT Development

with M5Stack

Figure 1: M5Stack Eco-system Family.

50 www.elektormagazine.com Partner Content

buttons, and other functionalities, enabling
users to easily implement various projects.

The standout feature of M5Dial is its rotary
encoder, which accurately records the position
and direction of the knob, providing users with
an enhanced interactive experience. Users
can adjust settings such as volume, bright-
ness, menus, or control home appliances like
lights, air conditioning, curtains, etc., using
the rotary knob. The built-in display screen of
the device can also show di"erent interactive
colors and e"ects. With its compact size of
45 mm × 45 mm × 32.2 mm and light weight
of 46.6 g, M5Dial is easy to implement.

Whether it’s used to control household appli-
ances in Smart Home or to monitor and control
systems in industrial automation, M5Dial can
be easily integrated to provide smart control
and interactive functionalities.

230662-01

The main controller of M5Dial is M5StampS3,
a microcontroller based on the ESP32-S3 chip,
known for its high performance and low-power
consumption. It supports Wi-Fi and Bluetooth
communication, as well as multiple periph-
eral interfaces such as SPI, I2C, UART, ADC,
and more. M5StampS3 also comes with 8 MB
of built-in flash, providing su"icient storage
space for users.

M5Dial features a 1.28-inch circular TFT touch
screen, a rotary encoder, an RFID detection
module, an RTC circuit, a buzzer, physical

The M5Stack modules (Figure 1) [1] can be
plugged and played with the UIFlow low-code
graphical programming IDE to provide the
best experience for prototyping IoT projects,
from entry-level hobbyists to professional
developers.

With Stackable hardware modules and a
user-friendly graphical programming platform,
M5Stack provides clients in Industrial IoT,
Home Automation, Smart Retail, Smart
Agriculture and STEM education, with e"icient
and reliable Quick & Easy IoT Development
experience.

New: The M5Dial
The recently launched M5Dial [2] is a highly
suitable product for Smart Home. As a versa-
tile embedded development board, M5Dial
integrates various functionalities and sensors
required for Smart Home control (Figure 2).

[1] The Innovator of Modular IoT Development Platform | M5Stack: https://m5stack.com/
[2] ESP32-S3 Smart Rotary Knob w/ 1.28” Round Touch Screen:

https://shop.m5stack.com/products/m5stack-dial-esp32-s3-smart-rotary-knob-w-1-28-round-touch-screen

WEB LINKS

If you are a fan of
ESP32, then M5Stack

is a must-have!

Figure 2: M5Dial is suitable for Smart Home.

Guest edited by 51Partner Content

safety and performance, is becoming popular among embedded
developers.

Slint, the only toolkit to provide native APIs for both C++ and
Rust (Figure 1), offers developers the choice: Write your business
logic in either language. Furthermore, it provides a transition
path for those interested in moving from their code from C/C++
to Rust.

Slint is a next-generation toolkit for building native graphical UIs
in C++, Rust, and JavaScript, with a broad cross-platform support,
including bare metal, RTOSs, and embedded Linux. On GitHub,
Slint has more than 10.000 stars.

Choose a Programming Language — C/C++ or Rust
In embedded programming, C/C++ have been the favorite program-
ming languages for a long time. But Rust, known for its memory

FEATURE

Contributed by Slint

Smartphones have rede"ned the
user experience of touch-based user
interfaces (UIs). Building a modern

smart UI necessitates the use of
modern graphical libraries and tools.

In this article, we’ll share tips and
showcase Slint, a toolkit for creating
interactive UIs that meet and exceed

user expectations.

Building a Smart
User Interface on ESP32

Figure 1: C++ and Rust logos.

Figure 2: Quick iterations
with Slint’s Live-Preview.

52 www.elektormagazine.com Partner Content

Separate UI from Business Logic
Common patterns like MVC or MVVM promote separating business
logic from the UI to enhance e#ciency and code quality.

In Slint, the UI is de"ned using a language akin to HTML/CSS,
promoting a strict division between presentation and business
logic. Complete your UI design through quick iterations with Slint’s
Live-Preview (Figure 2).

Enjoy a Good Developer Experience (DX)
Today’s complexity in software development requires a good DX:
Developers build with con"dence, drive greater impact, and feel
satis"ed.

You can keep using your favorite IDE. Choose between Slint’s VS
code extension (Figure 3) and the generic language server: Enjoy
code completion, syntax highlighting, diagnostics, live-preview, and
more. Additionally, Slint o$ers an ESP-IDF component, simplifying
its integration with the Espressif IoT Development Framework (IDF).

[1] Slint on ESP32: https://slint.dev/esp32
WEB LINK

Figure 3: Getting started
with Slint.

Figure 4: A Slint demo on ESP32.

Deliver an Exceptional User Experience (UX)
UI performance is critical for an exceptional UX. Enjoy %exibility in
hardware design with Slint’s line-by-line and framebu$er render-
ing capabilities on the ESP32 platform, ensuring a more versatile
approach to device development (Figure 4).

To get started with Slint on ESP32, visit [1].

230670-01

Guest edited by 53Partner Content

ESP32-C3-DevKitM-1
ESP32-C3-DevKitM-1 is an entry-level development board
based on ESP32-C3-MINI-1, a module named for its small
size. This board integrates complete Wi-Fi and Bluetooth
LE functions. Most of the I/O pins on the ESP32-C3-MINI-1
module are broken out to the pin headers on both sides
of this board for easy interfacing. Developers can either
connect peripherals with jumper wires or mount ESP32-
C3-DevKitM-1 on a breadboard.

www.elektor.com/20324

ESP32-Cam-CH340
The ESP32-Cam-CH340 development
board can be widely used in various
Internet of Things applications, such
as home intelligent devices, industrial
wireless control, wireless monitoring, QR
wireless identification, wireless position-
ing system signals and other Internet of
Things applications.

www.elektor.com/19333

ESP32-S3-Box-3
ESP32-S3-BOX-3 is a fully open-source
AIoT development kit based on the
powerful ESP32-S3 AI SoC, and is
designed to revolutionize the field of
traditional development boards. ESP32-
S3-BOX-3 comes packed with a rich set
of add-ons, empowering developers to
easily customize and expand this kit’s
functionality.

www.elektor.com/20627

ESP32-S3-Eye
The ESP32-S3-EYE is a small-sized AI
development board. It is based on the
ESP32-S3 SoC and ESP-WHO, Espres-
sif ’s AI development framework. It
features a 2-Megapixel camera, an LCD
display, and a microphone, which are
used for image recognition and audio
processing.

www.elektor.com/20626

ESP32-S3-DevkitC-1
The ESP32-S3-DevKitC-1 is an entry-
level development board equipped
with ESP32-S3-WROOM-1, ESP32-S3-
WROOM-1U, or ESP32-S3-WROOM-2,
a general-purpose Wi-Fi + Bluetooth
Low Energy MCU module that integrates
complete Wi-Fi and Bluetooth LE
functions.

www.elektor.com/20697

There is nothing that excites us more than getting our hands on
new hardware, and so this collaboration with Espressif has been a

treat! Want to experience the real deal yourself?
Elektor has stocked up the stores to accommodate all products

that are featured in this edition!

Hardware!

Get your hands on new

54 www.elektormagazine.com

Practical Audio DSP Projects
with the ESP32
The aim of this book is to teach the basic
principles of Digital Signal Processing
(DSP) and to introduce it from a practical
point of view using the bare minimum
of mathematics. Only the basic level of
discrete-time systems theory is given,
su!icient to implement DSP applications
in real time. The practical implementa-
tions are described in real-time using the
highly popular ESP32 DevKitC micro-
controller development board.

www.elektor.com/20558

MakePython ESP32
Development Kit
The MakePython ESP32 Kit is an indispens-
able development kit for ESP32 MicroPy-
thon programming. Along with the MakePy-
thon ESP32 development board, the kit
includes the basic electronic components
and modules you need to begin program-
ming. With the 46 projects in the enclosed
book, you can tackle simple electronic
projects with MicroPython on ESP32 and set
up your own IoT projects.

www.elektor.com/20137

RISC-V Assembly Language
Programming using
ESP32-C3 and QEMU
(+ FREE ESP32 RISC-V Board)
The availability of the Espressif ESP32-
C3 chip provides a way to get hands-on
experience with RISC-V. The open
sourced QEMU emulator adds a 64-bit
experience in RISC-V under Linux. These
are just two ways for the student and
enthusiast alike to explore RISC-V in this
book. The projects in this book are boiled
down to the barest essentials to keep the
assembly language concepts clear and
simple.

www.elektor.com/20296

MicroPython for Microcontrollers
Powerful controllers such as the ESP32 o!er excellent
performance as well as Wi-Fi and Bluetooth functional-
ity at an a!ordable price. With these features, the Maker
scene has been taken by storm. Compared to other
controllers, the ESP32 has a significantly larger flash and
SRAM memory, as well as a much higher CPU speed.
Due to these characteristics, the chip is not only suitable
for classic C applications, but also for programming with
MicroPython. This book introduces the application of
modern one-chip systems.

www.elektor.com/19736

Elektor Cloc 2.0 Kit
Cloc is an is an easy to build ESP32-based alarm clock that
connects to a timeserver and controls radio & TV. It has a
double 7-segment retro display with variable brightness. One
display shows the current time, the other the alarm time.

www.elektor.com/20438

Arduino Nano ESP32
The Arduino Nano ESP32 is a Nano form
factor board based on the ESP32-S3
(embedded in the NORA-W106-10B from
u-blox). This is the first Arduino board to
be based fully on an ESP32, and features
Wi-Fi, Bluetooth LE, debugging via
native USB in the Arduino IDE as well as
low power.

www.elektor.com/20562

ESP32-S2-Saola-1M
ESP32-S2-Saola-1M is a small-sized ESP32-S2 based develop-
ment board. Most of the I/O pins are broken out to the pin headers
on both sides for easy interfacing. Developers can either connect
peripherals with jumper wires or mount ESP32-S2-Saola-1M on a
breadboard. ESP32-S2-Saola-1M is equipped with the ESP32-S2-
WROOM module, a powerful, generic Wi-Fi MCU module that has
a rich set of peripherals.

www.elektor.com/19694

Guest edited by 55

