A new photovoltaic energy-conversion system developed at MIT can be powered solely by heat, generating electricity with no sunlight at all. While the principle involved is not new, a novel way of engineering the surface of a material to convert heat into precisely tuned wavelengths of light — selected to match the wavelengths that photovoltaic cells can best convert to electricity — makes the new system much more efficient than previous versions.

 

The key to this fine-tuned light emission, described in the journal Physical Review lies in a material with billions of nanoscale pits etched on its surface. When the material absorbs heat — whether from the sun, a hydrocarbon fuel, a decaying radioisotope or any other source — the pitted surface radiates energy primarily at these carefully chosen wavelengths.

 

Based on that technology, MIT researchers have made a button-sized power generator fueled by butane that can run three times longer than a lithium-ion battery of the same weight; the device can then be recharged instantly, just by snapping in a tiny cartridge of fresh fuel. Another device, powered by a radioisotope that steadily produces heat from radioactive decay, could generate electricity for 30 years without refueling or servicing — an ideal source of electricity for spacecraft headed on long missions away from the sun.

 

According to the U.S. Energy Information Administration, 92 percent of all the energy we use involves converting heat into mechanical energy, and then often into electricity — such as using fuel to boil water to turn a turbine, which is attached to a generator. But today's mechanical systems have relatively low efficiency, and can't be scaled down to the small sizes needed for devices such as sensors, smartphones or medical monitors.

 

Being able to convert heat from various sources into electricity without moving parts would bring huge benefits especially if it could be done do it efficiently, relatively inexpensively and on a small scale. It has long been known that photovoltaic (PV) cells needn't always run on sunlight. Half a century ago, researchers developed thermophotovoltaics (TPV), which couple a PV cell with any source of heat: A burning hydrocarbon, for example, heats up a material called the thermal emitter, which radiates heat and light onto the PV diode, generating electricity. The thermal emitter's radiation includes far more infrared wavelengths than occur in the solar spectrum, and "low band-gap" PV materials invented less than a decade ago can absorb more of that infrared radiation than standard silicon PVs can. But much of the heat is still wasted, so efficiencies remain relatively low.

 

The solution discovered at MIT is to design a thermal emitter that radiates only the wavelengths that the PV diode can absorb and convert into electricity, while suppressing other wavelengths. This is done by making a photonic crystal take a sample of material and create some nanoscale features on its surface — say, a regularly repeating pattern of holes or ridges — so light propagates through the sample in a dramatically different way. This gives us the ability to control and manipulate the behavior of light.

 

The team — which also includes Peter Bermel, research scientist in the Research Laboratory for Electronics (RLE); Peter Fisher, professor of physics; and Michael Ghebrebrhan, a postdoc in RLE — used a slab of tungsten, engineering billions of tiny pits on its surface. When the slab heats up, it generates bright light with an altered emission spectrum because each pit acts as a resonator, capable of giving off radiation at only certain wavelengths.

 

Source: MIT news office, contributions by David L. Chandler