Microchip Enters Memory Infrastructure Market with Serial Memory Controller for High-performance Data Center Computing

August 5, 2019 | 11:06
Microchip Enters Memory Infrastructure Market with Serial Memory Controller for High-performance Data Center Computing
Microchip Enters Memory Infrastructure Market with Serial Memory Controller for High-performance Data Center Computing
Key Facts:
  • SMC 1000 8x25G enables high memory bandwidth for next-generation CPUs and SoCs
  • Industry’s first commercially available serial memory controller for AI and machine learning
  • Enables four times the memory channels of parallel-attached DDR4 DRAM and low latency
  • Media-independent OMI interface does not need a unique memory controller for each media

As the computational demands of artificial intelligence (AI) and machine learning workloads accelerate, traditional parallel attached DRAM memory has presented a major roadblock for next-generation CPUs, which require an increased number of memory channels to deliver more memory bandwidth. Microchip Technology Inc today announced an expanded data center portfolio and its entrance into the memory infrastructure market with the industry’s first commercially available serial memory controller. The SMC 1000 8x25G enables CPUs and other compute-centric SoCs to utilize four times the memory channels of parallel attached DDR4 DRAM within the same package footprint. Microchip’s serial memory controllers deliver higher memory bandwidth and media independence to these compute-intensive platforms with ultra-low latency.
 
As the number of processing cores within CPUs has risen, the average memory bandwidth available to each processing core has decreased because CPU and SoC devices cannot scale the number of parallel DDR interfaces on a single chip to meet the needs of the increasing core count. The SMC 1000 8x25G interfaces to the CPU via 8-bit Open Memory Interface (OMI)-compliant 25 Gbps lanes and bridges to memory via a 72-bit DDR4 3200 interface. The result is a significant reduction in the required number of host CPU or SoC pins per DDR4 memory channel, allowing for more memory channels and increasing the memory bandwidth available.
 
A CPU or SoC with OMI support can utilize a broad set of media types with different cost, power and performance metrics without having to integrate a unique memory controller for each type. In contrast, CPU and SoC memory interfaces today are typically locked to specific DDR interface protocols, such as DDR4, at specific interface rates. The SMC 1000 8x25G is the first memory infrastructure product in Microchip’s portfolio that enables the media-independent OMI interface.
 
Data center application workloads require OMI-based DDIMM memory products to deliver the same high-performance bandwidth and low latency results of today’s parallel-DDR based memory products. Microchip’s SMC 1000 8x25G features an innovative low latency design that delivers less than 4 ns incremental latency to the first DRAM data access and identical subsequent data access performance. This results in OMI-based DDIMM products having virtually identical bandwidth and latency performance to comparable LRDIMM products.
Next page 1/2
Loading comments...
related items